Step |
Hyp |
Ref |
Expression |
1 |
|
oveq1 |
⊢ ( 𝑥 = 𝑥𝑂 → ( 𝑥 ·s ( 𝑦 +s 𝑧 ) ) = ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧 ) ) ) |
2 |
|
oveq1 |
⊢ ( 𝑥 = 𝑥𝑂 → ( 𝑥 ·s 𝑦 ) = ( 𝑥𝑂 ·s 𝑦 ) ) |
3 |
|
oveq1 |
⊢ ( 𝑥 = 𝑥𝑂 → ( 𝑥 ·s 𝑧 ) = ( 𝑥𝑂 ·s 𝑧 ) ) |
4 |
2 3
|
oveq12d |
⊢ ( 𝑥 = 𝑥𝑂 → ( ( 𝑥 ·s 𝑦 ) +s ( 𝑥 ·s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ) |
5 |
1 4
|
eqeq12d |
⊢ ( 𝑥 = 𝑥𝑂 → ( ( 𝑥 ·s ( 𝑦 +s 𝑧 ) ) = ( ( 𝑥 ·s 𝑦 ) +s ( 𝑥 ·s 𝑧 ) ) ↔ ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ) ) |
6 |
|
oveq1 |
⊢ ( 𝑦 = 𝑦𝑂 → ( 𝑦 +s 𝑧 ) = ( 𝑦𝑂 +s 𝑧 ) ) |
7 |
6
|
oveq2d |
⊢ ( 𝑦 = 𝑦𝑂 → ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧 ) ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧 ) ) ) |
8 |
|
oveq2 |
⊢ ( 𝑦 = 𝑦𝑂 → ( 𝑥𝑂 ·s 𝑦 ) = ( 𝑥𝑂 ·s 𝑦𝑂 ) ) |
9 |
8
|
oveq1d |
⊢ ( 𝑦 = 𝑦𝑂 → ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ) |
10 |
7 9
|
eqeq12d |
⊢ ( 𝑦 = 𝑦𝑂 → ( ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ↔ ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ) ) |
11 |
|
oveq2 |
⊢ ( 𝑧 = 𝑧𝑂 → ( 𝑦𝑂 +s 𝑧 ) = ( 𝑦𝑂 +s 𝑧𝑂 ) ) |
12 |
11
|
oveq2d |
⊢ ( 𝑧 = 𝑧𝑂 → ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) ) |
13 |
|
oveq2 |
⊢ ( 𝑧 = 𝑧𝑂 → ( 𝑥𝑂 ·s 𝑧 ) = ( 𝑥𝑂 ·s 𝑧𝑂 ) ) |
14 |
13
|
oveq2d |
⊢ ( 𝑧 = 𝑧𝑂 → ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ) |
15 |
12 14
|
eqeq12d |
⊢ ( 𝑧 = 𝑧𝑂 → ( ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ↔ ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ) ) |
16 |
|
oveq1 |
⊢ ( 𝑥 = 𝑥𝑂 → ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) ) |
17 |
|
oveq1 |
⊢ ( 𝑥 = 𝑥𝑂 → ( 𝑥 ·s 𝑦𝑂 ) = ( 𝑥𝑂 ·s 𝑦𝑂 ) ) |
18 |
|
oveq1 |
⊢ ( 𝑥 = 𝑥𝑂 → ( 𝑥 ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s 𝑧𝑂 ) ) |
19 |
17 18
|
oveq12d |
⊢ ( 𝑥 = 𝑥𝑂 → ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ) |
20 |
16 19
|
eqeq12d |
⊢ ( 𝑥 = 𝑥𝑂 → ( ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ↔ ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ) ) |
21 |
|
oveq1 |
⊢ ( 𝑦 = 𝑦𝑂 → ( 𝑦 +s 𝑧𝑂 ) = ( 𝑦𝑂 +s 𝑧𝑂 ) ) |
22 |
21
|
oveq2d |
⊢ ( 𝑦 = 𝑦𝑂 → ( 𝑥 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) ) |
23 |
|
oveq2 |
⊢ ( 𝑦 = 𝑦𝑂 → ( 𝑥 ·s 𝑦 ) = ( 𝑥 ·s 𝑦𝑂 ) ) |
24 |
23
|
oveq1d |
⊢ ( 𝑦 = 𝑦𝑂 → ( ( 𝑥 ·s 𝑦 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ) |
25 |
22 24
|
eqeq12d |
⊢ ( 𝑦 = 𝑦𝑂 → ( ( 𝑥 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ↔ ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ) ) |
26 |
21
|
oveq2d |
⊢ ( 𝑦 = 𝑦𝑂 → ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) ) |
27 |
8
|
oveq1d |
⊢ ( 𝑦 = 𝑦𝑂 → ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ) |
28 |
26 27
|
eqeq12d |
⊢ ( 𝑦 = 𝑦𝑂 → ( ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ↔ ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ) ) |
29 |
11
|
oveq2d |
⊢ ( 𝑧 = 𝑧𝑂 → ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) ) |
30 |
|
oveq2 |
⊢ ( 𝑧 = 𝑧𝑂 → ( 𝑥 ·s 𝑧 ) = ( 𝑥 ·s 𝑧𝑂 ) ) |
31 |
30
|
oveq2d |
⊢ ( 𝑧 = 𝑧𝑂 → ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ) |
32 |
29 31
|
eqeq12d |
⊢ ( 𝑧 = 𝑧𝑂 → ( ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧 ) ) ↔ ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ) ) |
33 |
|
oveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ·s ( 𝑦 +s 𝑧 ) ) = ( 𝐴 ·s ( 𝑦 +s 𝑧 ) ) ) |
34 |
|
oveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ·s 𝑦 ) = ( 𝐴 ·s 𝑦 ) ) |
35 |
|
oveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ·s 𝑧 ) = ( 𝐴 ·s 𝑧 ) ) |
36 |
34 35
|
oveq12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ·s 𝑦 ) +s ( 𝑥 ·s 𝑧 ) ) = ( ( 𝐴 ·s 𝑦 ) +s ( 𝐴 ·s 𝑧 ) ) ) |
37 |
33 36
|
eqeq12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ·s ( 𝑦 +s 𝑧 ) ) = ( ( 𝑥 ·s 𝑦 ) +s ( 𝑥 ·s 𝑧 ) ) ↔ ( 𝐴 ·s ( 𝑦 +s 𝑧 ) ) = ( ( 𝐴 ·s 𝑦 ) +s ( 𝐴 ·s 𝑧 ) ) ) ) |
38 |
|
oveq1 |
⊢ ( 𝑦 = 𝐵 → ( 𝑦 +s 𝑧 ) = ( 𝐵 +s 𝑧 ) ) |
39 |
38
|
oveq2d |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 ·s ( 𝑦 +s 𝑧 ) ) = ( 𝐴 ·s ( 𝐵 +s 𝑧 ) ) ) |
40 |
|
oveq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 ·s 𝑦 ) = ( 𝐴 ·s 𝐵 ) ) |
41 |
40
|
oveq1d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 ·s 𝑦 ) +s ( 𝐴 ·s 𝑧 ) ) = ( ( 𝐴 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) ) |
42 |
39 41
|
eqeq12d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 ·s ( 𝑦 +s 𝑧 ) ) = ( ( 𝐴 ·s 𝑦 ) +s ( 𝐴 ·s 𝑧 ) ) ↔ ( 𝐴 ·s ( 𝐵 +s 𝑧 ) ) = ( ( 𝐴 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) ) ) |
43 |
|
oveq2 |
⊢ ( 𝑧 = 𝐶 → ( 𝐵 +s 𝑧 ) = ( 𝐵 +s 𝐶 ) ) |
44 |
43
|
oveq2d |
⊢ ( 𝑧 = 𝐶 → ( 𝐴 ·s ( 𝐵 +s 𝑧 ) ) = ( 𝐴 ·s ( 𝐵 +s 𝐶 ) ) ) |
45 |
|
oveq2 |
⊢ ( 𝑧 = 𝐶 → ( 𝐴 ·s 𝑧 ) = ( 𝐴 ·s 𝐶 ) ) |
46 |
45
|
oveq2d |
⊢ ( 𝑧 = 𝐶 → ( ( 𝐴 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) = ( ( 𝐴 ·s 𝐵 ) +s ( 𝐴 ·s 𝐶 ) ) ) |
47 |
44 46
|
eqeq12d |
⊢ ( 𝑧 = 𝐶 → ( ( 𝐴 ·s ( 𝐵 +s 𝑧 ) ) = ( ( 𝐴 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) ↔ ( 𝐴 ·s ( 𝐵 +s 𝐶 ) ) = ( ( 𝐴 ·s 𝐵 ) +s ( 𝐴 ·s 𝐶 ) ) ) ) |
48 |
|
simpl1 |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ) ) → 𝑥 ∈ No ) |
49 |
|
simpl2 |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ) ) → 𝑦 ∈ No ) |
50 |
|
simpl3 |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ) ) → 𝑧 ∈ No ) |
51 |
|
simpr21 |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ) ) → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ) |
52 |
|
simpr23 |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ) ) → ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧 ) ) ) |
53 |
|
simpr12 |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ) ) → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ) |
54 |
|
elun1 |
⊢ ( 𝑥𝐿 ∈ ( L ‘ 𝑥 ) → 𝑥𝐿 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ) |
55 |
54
|
adantr |
⊢ ( ( 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∧ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ) → 𝑥𝐿 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ) |
56 |
|
elun1 |
⊢ ( 𝑦𝐿 ∈ ( L ‘ 𝑦 ) → 𝑦𝐿 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ) |
57 |
56
|
adantl |
⊢ ( ( 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∧ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ) → 𝑦𝐿 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ) |
58 |
48 49 50 51 52 53 55 57
|
addsdilem3 |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ) ) ∧ ( 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∧ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ) ) → ( ( ( 𝑥𝐿 ·s ( 𝑦 +s 𝑧 ) ) +s ( 𝑥 ·s ( 𝑦𝐿 +s 𝑧 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝐿 +s 𝑧 ) ) ) = ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) +s ( 𝑥 ·s 𝑧 ) ) ) |
59 |
58
|
eqeq2d |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ) ) ∧ ( 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∧ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ) ) → ( 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 +s 𝑧 ) ) +s ( 𝑥 ·s ( 𝑦𝐿 +s 𝑧 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝐿 +s 𝑧 ) ) ) ↔ 𝑎 = ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) +s ( 𝑥 ·s 𝑧 ) ) ) ) |
60 |
59
|
2rexbidva |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ) ) → ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 +s 𝑧 ) ) +s ( 𝑥 ·s ( 𝑦𝐿 +s 𝑧 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝐿 +s 𝑧 ) ) ) ↔ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) +s ( 𝑥 ·s 𝑧 ) ) ) ) |
61 |
60
|
abbidv |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ) ) → { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 +s 𝑧 ) ) +s ( 𝑥 ·s ( 𝑦𝐿 +s 𝑧 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝐿 +s 𝑧 ) ) ) } = { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) +s ( 𝑥 ·s 𝑧 ) ) } ) |
62 |
|
simpr3 |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ) ) → ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ) |
63 |
|
simpr13 |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ) ) → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ) |
64 |
54
|
adantr |
⊢ ( ( 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∧ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) ) → 𝑥𝐿 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ) |
65 |
|
elun1 |
⊢ ( 𝑧𝐿 ∈ ( L ‘ 𝑧 ) → 𝑧𝐿 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ) |
66 |
65
|
adantl |
⊢ ( ( 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∧ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) ) → 𝑧𝐿 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ) |
67 |
48 49 50 51 62 63 64 66
|
addsdilem4 |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ) ) ∧ ( 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∧ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) ) ) → ( ( ( 𝑥𝐿 ·s ( 𝑦 +s 𝑧 ) ) +s ( 𝑥 ·s ( 𝑦 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦 +s 𝑧𝐿 ) ) ) = ( ( 𝑥 ·s 𝑦 ) +s ( ( ( 𝑥𝐿 ·s 𝑧 ) +s ( 𝑥 ·s 𝑧𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑧𝐿 ) ) ) ) |
68 |
67
|
eqeq2d |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ) ) ∧ ( 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∧ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) ) ) → ( 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 +s 𝑧 ) ) +s ( 𝑥 ·s ( 𝑦 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦 +s 𝑧𝐿 ) ) ) ↔ 𝑎 = ( ( 𝑥 ·s 𝑦 ) +s ( ( ( 𝑥𝐿 ·s 𝑧 ) +s ( 𝑥 ·s 𝑧𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑧𝐿 ) ) ) ) ) |
69 |
68
|
2rexbidva |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ) ) → ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 +s 𝑧 ) ) +s ( 𝑥 ·s ( 𝑦 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦 +s 𝑧𝐿 ) ) ) ↔ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( 𝑥 ·s 𝑦 ) +s ( ( ( 𝑥𝐿 ·s 𝑧 ) +s ( 𝑥 ·s 𝑧𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑧𝐿 ) ) ) ) ) |
70 |
69
|
abbidv |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ) ) → { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 +s 𝑧 ) ) +s ( 𝑥 ·s ( 𝑦 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦 +s 𝑧𝐿 ) ) ) } = { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( 𝑥 ·s 𝑦 ) +s ( ( ( 𝑥𝐿 ·s 𝑧 ) +s ( 𝑥 ·s 𝑧𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑧𝐿 ) ) ) } ) |
71 |
61 70
|
uneq12d |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ) ) → ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 +s 𝑧 ) ) +s ( 𝑥 ·s ( 𝑦𝐿 +s 𝑧 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝐿 +s 𝑧 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 +s 𝑧 ) ) +s ( 𝑥 ·s ( 𝑦 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦 +s 𝑧𝐿 ) ) ) } ) = ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) +s ( 𝑥 ·s 𝑧 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( 𝑥 ·s 𝑦 ) +s ( ( ( 𝑥𝐿 ·s 𝑧 ) +s ( 𝑥 ·s 𝑧𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑧𝐿 ) ) ) } ) ) |
72 |
|
elun2 |
⊢ ( 𝑥𝑅 ∈ ( R ‘ 𝑥 ) → 𝑥𝑅 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ) |
73 |
72
|
adantr |
⊢ ( ( 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∧ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ) → 𝑥𝑅 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ) |
74 |
|
elun2 |
⊢ ( 𝑦𝑅 ∈ ( R ‘ 𝑦 ) → 𝑦𝑅 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ) |
75 |
74
|
adantl |
⊢ ( ( 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∧ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ) → 𝑦𝑅 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ) |
76 |
48 49 50 51 52 53 73 75
|
addsdilem3 |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∧ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ) ) → ( ( ( 𝑥𝑅 ·s ( 𝑦 +s 𝑧 ) ) +s ( 𝑥 ·s ( 𝑦𝑅 +s 𝑧 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝑅 +s 𝑧 ) ) ) = ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) +s ( 𝑥 ·s 𝑧 ) ) ) |
77 |
76
|
eqeq2d |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∧ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ) ) → ( 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 +s 𝑧 ) ) +s ( 𝑥 ·s ( 𝑦𝑅 +s 𝑧 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝑅 +s 𝑧 ) ) ) ↔ 𝑎 = ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) +s ( 𝑥 ·s 𝑧 ) ) ) ) |
78 |
77
|
2rexbidva |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ) ) → ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 +s 𝑧 ) ) +s ( 𝑥 ·s ( 𝑦𝑅 +s 𝑧 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝑅 +s 𝑧 ) ) ) ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑎 = ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) +s ( 𝑥 ·s 𝑧 ) ) ) ) |
79 |
78
|
abbidv |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ) ) → { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 +s 𝑧 ) ) +s ( 𝑥 ·s ( 𝑦𝑅 +s 𝑧 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝑅 +s 𝑧 ) ) ) } = { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑎 = ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) +s ( 𝑥 ·s 𝑧 ) ) } ) |
80 |
72
|
adantr |
⊢ ( ( 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∧ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ) → 𝑥𝑅 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ) |
81 |
|
elun2 |
⊢ ( 𝑧𝑅 ∈ ( R ‘ 𝑧 ) → 𝑧𝑅 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ) |
82 |
81
|
adantl |
⊢ ( ( 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∧ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ) → 𝑧𝑅 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ) |
83 |
48 49 50 51 62 63 80 82
|
addsdilem4 |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∧ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ) ) → ( ( ( 𝑥𝑅 ·s ( 𝑦 +s 𝑧 ) ) +s ( 𝑥 ·s ( 𝑦 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦 +s 𝑧𝑅 ) ) ) = ( ( 𝑥 ·s 𝑦 ) +s ( ( ( 𝑥𝑅 ·s 𝑧 ) +s ( 𝑥 ·s 𝑧𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑧𝑅 ) ) ) ) |
84 |
83
|
eqeq2d |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∧ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ) ) → ( 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 +s 𝑧 ) ) +s ( 𝑥 ·s ( 𝑦 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦 +s 𝑧𝑅 ) ) ) ↔ 𝑎 = ( ( 𝑥 ·s 𝑦 ) +s ( ( ( 𝑥𝑅 ·s 𝑧 ) +s ( 𝑥 ·s 𝑧𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑧𝑅 ) ) ) ) ) |
85 |
84
|
2rexbidva |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ) ) → ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 +s 𝑧 ) ) +s ( 𝑥 ·s ( 𝑦 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦 +s 𝑧𝑅 ) ) ) ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( 𝑥 ·s 𝑦 ) +s ( ( ( 𝑥𝑅 ·s 𝑧 ) +s ( 𝑥 ·s 𝑧𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑧𝑅 ) ) ) ) ) |
86 |
85
|
abbidv |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ) ) → { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 +s 𝑧 ) ) +s ( 𝑥 ·s ( 𝑦 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦 +s 𝑧𝑅 ) ) ) } = { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( 𝑥 ·s 𝑦 ) +s ( ( ( 𝑥𝑅 ·s 𝑧 ) +s ( 𝑥 ·s 𝑧𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑧𝑅 ) ) ) } ) |
87 |
79 86
|
uneq12d |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ) ) → ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 +s 𝑧 ) ) +s ( 𝑥 ·s ( 𝑦𝑅 +s 𝑧 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝑅 +s 𝑧 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 +s 𝑧 ) ) +s ( 𝑥 ·s ( 𝑦 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦 +s 𝑧𝑅 ) ) ) } ) = ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑎 = ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) +s ( 𝑥 ·s 𝑧 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( 𝑥 ·s 𝑦 ) +s ( ( ( 𝑥𝑅 ·s 𝑧 ) +s ( 𝑥 ·s 𝑧𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑧𝑅 ) ) ) } ) ) |
88 |
71 87
|
uneq12d |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ) ) → ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 +s 𝑧 ) ) +s ( 𝑥 ·s ( 𝑦𝐿 +s 𝑧 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝐿 +s 𝑧 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 +s 𝑧 ) ) +s ( 𝑥 ·s ( 𝑦 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦 +s 𝑧𝐿 ) ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 +s 𝑧 ) ) +s ( 𝑥 ·s ( 𝑦𝑅 +s 𝑧 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝑅 +s 𝑧 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 +s 𝑧 ) ) +s ( 𝑥 ·s ( 𝑦 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦 +s 𝑧𝑅 ) ) ) } ) ) = ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) +s ( 𝑥 ·s 𝑧 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( 𝑥 ·s 𝑦 ) +s ( ( ( 𝑥𝐿 ·s 𝑧 ) +s ( 𝑥 ·s 𝑧𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑧𝐿 ) ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑎 = ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) +s ( 𝑥 ·s 𝑧 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( 𝑥 ·s 𝑦 ) +s ( ( ( 𝑥𝑅 ·s 𝑧 ) +s ( 𝑥 ·s 𝑧𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑧𝑅 ) ) ) } ) ) ) |
89 |
|
un4 |
⊢ ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) +s ( 𝑥 ·s 𝑧 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( 𝑥 ·s 𝑦 ) +s ( ( ( 𝑥𝐿 ·s 𝑧 ) +s ( 𝑥 ·s 𝑧𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑧𝐿 ) ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑎 = ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) +s ( 𝑥 ·s 𝑧 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( 𝑥 ·s 𝑦 ) +s ( ( ( 𝑥𝑅 ·s 𝑧 ) +s ( 𝑥 ·s 𝑧𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑧𝑅 ) ) ) } ) ) = ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) +s ( 𝑥 ·s 𝑧 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑎 = ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) +s ( 𝑥 ·s 𝑧 ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( 𝑥 ·s 𝑦 ) +s ( ( ( 𝑥𝐿 ·s 𝑧 ) +s ( 𝑥 ·s 𝑧𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑧𝐿 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( 𝑥 ·s 𝑦 ) +s ( ( ( 𝑥𝑅 ·s 𝑧 ) +s ( 𝑥 ·s 𝑧𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑧𝑅 ) ) ) } ) ) |
90 |
88 89
|
eqtrdi |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ) ) → ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 +s 𝑧 ) ) +s ( 𝑥 ·s ( 𝑦𝐿 +s 𝑧 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝐿 +s 𝑧 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 +s 𝑧 ) ) +s ( 𝑥 ·s ( 𝑦 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦 +s 𝑧𝐿 ) ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 +s 𝑧 ) ) +s ( 𝑥 ·s ( 𝑦𝑅 +s 𝑧 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝑅 +s 𝑧 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 +s 𝑧 ) ) +s ( 𝑥 ·s ( 𝑦 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦 +s 𝑧𝑅 ) ) ) } ) ) = ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) +s ( 𝑥 ·s 𝑧 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑎 = ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) +s ( 𝑥 ·s 𝑧 ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( 𝑥 ·s 𝑦 ) +s ( ( ( 𝑥𝐿 ·s 𝑧 ) +s ( 𝑥 ·s 𝑧𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑧𝐿 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( 𝑥 ·s 𝑦 ) +s ( ( ( 𝑥𝑅 ·s 𝑧 ) +s ( 𝑥 ·s 𝑧𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑧𝑅 ) ) ) } ) ) ) |
91 |
54
|
adantr |
⊢ ( ( 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∧ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ) → 𝑥𝐿 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ) |
92 |
74
|
adantl |
⊢ ( ( 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∧ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ) → 𝑦𝑅 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ) |
93 |
48 49 50 51 52 53 91 92
|
addsdilem3 |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ) ) ∧ ( 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∧ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ) ) → ( ( ( 𝑥𝐿 ·s ( 𝑦 +s 𝑧 ) ) +s ( 𝑥 ·s ( 𝑦𝑅 +s 𝑧 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝑅 +s 𝑧 ) ) ) = ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) +s ( 𝑥 ·s 𝑧 ) ) ) |
94 |
93
|
eqeq2d |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ) ) ∧ ( 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∧ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ) ) → ( 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 +s 𝑧 ) ) +s ( 𝑥 ·s ( 𝑦𝑅 +s 𝑧 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝑅 +s 𝑧 ) ) ) ↔ 𝑎 = ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) +s ( 𝑥 ·s 𝑧 ) ) ) ) |
95 |
94
|
2rexbidva |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ) ) → ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 +s 𝑧 ) ) +s ( 𝑥 ·s ( 𝑦𝑅 +s 𝑧 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝑅 +s 𝑧 ) ) ) ↔ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑎 = ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) +s ( 𝑥 ·s 𝑧 ) ) ) ) |
96 |
95
|
abbidv |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ) ) → { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 +s 𝑧 ) ) +s ( 𝑥 ·s ( 𝑦𝑅 +s 𝑧 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝑅 +s 𝑧 ) ) ) } = { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑎 = ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) +s ( 𝑥 ·s 𝑧 ) ) } ) |
97 |
54
|
adantr |
⊢ ( ( 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∧ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ) → 𝑥𝐿 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ) |
98 |
81
|
adantl |
⊢ ( ( 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∧ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ) → 𝑧𝑅 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ) |
99 |
48 49 50 51 62 63 97 98
|
addsdilem4 |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ) ) ∧ ( 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∧ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ) ) → ( ( ( 𝑥𝐿 ·s ( 𝑦 +s 𝑧 ) ) +s ( 𝑥 ·s ( 𝑦 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦 +s 𝑧𝑅 ) ) ) = ( ( 𝑥 ·s 𝑦 ) +s ( ( ( 𝑥𝐿 ·s 𝑧 ) +s ( 𝑥 ·s 𝑧𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑧𝑅 ) ) ) ) |
100 |
99
|
eqeq2d |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ) ) ∧ ( 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∧ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ) ) → ( 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 +s 𝑧 ) ) +s ( 𝑥 ·s ( 𝑦 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦 +s 𝑧𝑅 ) ) ) ↔ 𝑎 = ( ( 𝑥 ·s 𝑦 ) +s ( ( ( 𝑥𝐿 ·s 𝑧 ) +s ( 𝑥 ·s 𝑧𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑧𝑅 ) ) ) ) ) |
101 |
100
|
2rexbidva |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ) ) → ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 +s 𝑧 ) ) +s ( 𝑥 ·s ( 𝑦 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦 +s 𝑧𝑅 ) ) ) ↔ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( 𝑥 ·s 𝑦 ) +s ( ( ( 𝑥𝐿 ·s 𝑧 ) +s ( 𝑥 ·s 𝑧𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑧𝑅 ) ) ) ) ) |
102 |
101
|
abbidv |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ) ) → { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 +s 𝑧 ) ) +s ( 𝑥 ·s ( 𝑦 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦 +s 𝑧𝑅 ) ) ) } = { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( 𝑥 ·s 𝑦 ) +s ( ( ( 𝑥𝐿 ·s 𝑧 ) +s ( 𝑥 ·s 𝑧𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑧𝑅 ) ) ) } ) |
103 |
96 102
|
uneq12d |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ) ) → ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 +s 𝑧 ) ) +s ( 𝑥 ·s ( 𝑦𝑅 +s 𝑧 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝑅 +s 𝑧 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 +s 𝑧 ) ) +s ( 𝑥 ·s ( 𝑦 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦 +s 𝑧𝑅 ) ) ) } ) = ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑎 = ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) +s ( 𝑥 ·s 𝑧 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( 𝑥 ·s 𝑦 ) +s ( ( ( 𝑥𝐿 ·s 𝑧 ) +s ( 𝑥 ·s 𝑧𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑧𝑅 ) ) ) } ) ) |
104 |
72
|
adantr |
⊢ ( ( 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∧ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ) → 𝑥𝑅 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ) |
105 |
56
|
adantl |
⊢ ( ( 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∧ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ) → 𝑦𝐿 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ) |
106 |
48 49 50 51 52 53 104 105
|
addsdilem3 |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∧ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ) ) → ( ( ( 𝑥𝑅 ·s ( 𝑦 +s 𝑧 ) ) +s ( 𝑥 ·s ( 𝑦𝐿 +s 𝑧 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝐿 +s 𝑧 ) ) ) = ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) +s ( 𝑥 ·s 𝑧 ) ) ) |
107 |
106
|
eqeq2d |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∧ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ) ) → ( 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 +s 𝑧 ) ) +s ( 𝑥 ·s ( 𝑦𝐿 +s 𝑧 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝐿 +s 𝑧 ) ) ) ↔ 𝑎 = ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) +s ( 𝑥 ·s 𝑧 ) ) ) ) |
108 |
107
|
2rexbidva |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ) ) → ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 +s 𝑧 ) ) +s ( 𝑥 ·s ( 𝑦𝐿 +s 𝑧 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝐿 +s 𝑧 ) ) ) ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) +s ( 𝑥 ·s 𝑧 ) ) ) ) |
109 |
108
|
abbidv |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ) ) → { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 +s 𝑧 ) ) +s ( 𝑥 ·s ( 𝑦𝐿 +s 𝑧 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝐿 +s 𝑧 ) ) ) } = { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) +s ( 𝑥 ·s 𝑧 ) ) } ) |
110 |
72
|
adantr |
⊢ ( ( 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∧ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) ) → 𝑥𝑅 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ) |
111 |
65
|
adantl |
⊢ ( ( 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∧ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) ) → 𝑧𝐿 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ) |
112 |
48 49 50 51 62 63 110 111
|
addsdilem4 |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∧ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) ) ) → ( ( ( 𝑥𝑅 ·s ( 𝑦 +s 𝑧 ) ) +s ( 𝑥 ·s ( 𝑦 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦 +s 𝑧𝐿 ) ) ) = ( ( 𝑥 ·s 𝑦 ) +s ( ( ( 𝑥𝑅 ·s 𝑧 ) +s ( 𝑥 ·s 𝑧𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑧𝐿 ) ) ) ) |
113 |
112
|
eqeq2d |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∧ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) ) ) → ( 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 +s 𝑧 ) ) +s ( 𝑥 ·s ( 𝑦 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦 +s 𝑧𝐿 ) ) ) ↔ 𝑎 = ( ( 𝑥 ·s 𝑦 ) +s ( ( ( 𝑥𝑅 ·s 𝑧 ) +s ( 𝑥 ·s 𝑧𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑧𝐿 ) ) ) ) ) |
114 |
113
|
2rexbidva |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ) ) → ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 +s 𝑧 ) ) +s ( 𝑥 ·s ( 𝑦 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦 +s 𝑧𝐿 ) ) ) ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( 𝑥 ·s 𝑦 ) +s ( ( ( 𝑥𝑅 ·s 𝑧 ) +s ( 𝑥 ·s 𝑧𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑧𝐿 ) ) ) ) ) |
115 |
114
|
abbidv |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ) ) → { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 +s 𝑧 ) ) +s ( 𝑥 ·s ( 𝑦 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦 +s 𝑧𝐿 ) ) ) } = { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( 𝑥 ·s 𝑦 ) +s ( ( ( 𝑥𝑅 ·s 𝑧 ) +s ( 𝑥 ·s 𝑧𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑧𝐿 ) ) ) } ) |
116 |
109 115
|
uneq12d |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ) ) → ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 +s 𝑧 ) ) +s ( 𝑥 ·s ( 𝑦𝐿 +s 𝑧 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝐿 +s 𝑧 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 +s 𝑧 ) ) +s ( 𝑥 ·s ( 𝑦 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦 +s 𝑧𝐿 ) ) ) } ) = ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) +s ( 𝑥 ·s 𝑧 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( 𝑥 ·s 𝑦 ) +s ( ( ( 𝑥𝑅 ·s 𝑧 ) +s ( 𝑥 ·s 𝑧𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑧𝐿 ) ) ) } ) ) |
117 |
103 116
|
uneq12d |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ) ) → ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 +s 𝑧 ) ) +s ( 𝑥 ·s ( 𝑦𝑅 +s 𝑧 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝑅 +s 𝑧 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 +s 𝑧 ) ) +s ( 𝑥 ·s ( 𝑦 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦 +s 𝑧𝑅 ) ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 +s 𝑧 ) ) +s ( 𝑥 ·s ( 𝑦𝐿 +s 𝑧 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝐿 +s 𝑧 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 +s 𝑧 ) ) +s ( 𝑥 ·s ( 𝑦 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦 +s 𝑧𝐿 ) ) ) } ) ) = ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑎 = ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) +s ( 𝑥 ·s 𝑧 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( 𝑥 ·s 𝑦 ) +s ( ( ( 𝑥𝐿 ·s 𝑧 ) +s ( 𝑥 ·s 𝑧𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑧𝑅 ) ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) +s ( 𝑥 ·s 𝑧 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( 𝑥 ·s 𝑦 ) +s ( ( ( 𝑥𝑅 ·s 𝑧 ) +s ( 𝑥 ·s 𝑧𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑧𝐿 ) ) ) } ) ) ) |
118 |
|
un4 |
⊢ ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑎 = ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) +s ( 𝑥 ·s 𝑧 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( 𝑥 ·s 𝑦 ) +s ( ( ( 𝑥𝐿 ·s 𝑧 ) +s ( 𝑥 ·s 𝑧𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑧𝑅 ) ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) +s ( 𝑥 ·s 𝑧 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( 𝑥 ·s 𝑦 ) +s ( ( ( 𝑥𝑅 ·s 𝑧 ) +s ( 𝑥 ·s 𝑧𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑧𝐿 ) ) ) } ) ) = ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑎 = ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) +s ( 𝑥 ·s 𝑧 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) +s ( 𝑥 ·s 𝑧 ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( 𝑥 ·s 𝑦 ) +s ( ( ( 𝑥𝐿 ·s 𝑧 ) +s ( 𝑥 ·s 𝑧𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑧𝑅 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( 𝑥 ·s 𝑦 ) +s ( ( ( 𝑥𝑅 ·s 𝑧 ) +s ( 𝑥 ·s 𝑧𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑧𝐿 ) ) ) } ) ) |
119 |
117 118
|
eqtrdi |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ) ) → ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 +s 𝑧 ) ) +s ( 𝑥 ·s ( 𝑦𝑅 +s 𝑧 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝑅 +s 𝑧 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 +s 𝑧 ) ) +s ( 𝑥 ·s ( 𝑦 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦 +s 𝑧𝑅 ) ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 +s 𝑧 ) ) +s ( 𝑥 ·s ( 𝑦𝐿 +s 𝑧 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝐿 +s 𝑧 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 +s 𝑧 ) ) +s ( 𝑥 ·s ( 𝑦 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦 +s 𝑧𝐿 ) ) ) } ) ) = ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑎 = ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) +s ( 𝑥 ·s 𝑧 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) +s ( 𝑥 ·s 𝑧 ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( 𝑥 ·s 𝑦 ) +s ( ( ( 𝑥𝐿 ·s 𝑧 ) +s ( 𝑥 ·s 𝑧𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑧𝑅 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( 𝑥 ·s 𝑦 ) +s ( ( ( 𝑥𝑅 ·s 𝑧 ) +s ( 𝑥 ·s 𝑧𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑧𝐿 ) ) ) } ) ) ) |
120 |
90 119
|
oveq12d |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ) ) → ( ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 +s 𝑧 ) ) +s ( 𝑥 ·s ( 𝑦𝐿 +s 𝑧 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝐿 +s 𝑧 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 +s 𝑧 ) ) +s ( 𝑥 ·s ( 𝑦 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦 +s 𝑧𝐿 ) ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 +s 𝑧 ) ) +s ( 𝑥 ·s ( 𝑦𝑅 +s 𝑧 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝑅 +s 𝑧 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 +s 𝑧 ) ) +s ( 𝑥 ·s ( 𝑦 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦 +s 𝑧𝑅 ) ) ) } ) ) |s ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 +s 𝑧 ) ) +s ( 𝑥 ·s ( 𝑦𝑅 +s 𝑧 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝑅 +s 𝑧 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 +s 𝑧 ) ) +s ( 𝑥 ·s ( 𝑦 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦 +s 𝑧𝑅 ) ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 +s 𝑧 ) ) +s ( 𝑥 ·s ( 𝑦𝐿 +s 𝑧 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝐿 +s 𝑧 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 +s 𝑧 ) ) +s ( 𝑥 ·s ( 𝑦 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦 +s 𝑧𝐿 ) ) ) } ) ) ) = ( ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) +s ( 𝑥 ·s 𝑧 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑎 = ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) +s ( 𝑥 ·s 𝑧 ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( 𝑥 ·s 𝑦 ) +s ( ( ( 𝑥𝐿 ·s 𝑧 ) +s ( 𝑥 ·s 𝑧𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑧𝐿 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( 𝑥 ·s 𝑦 ) +s ( ( ( 𝑥𝑅 ·s 𝑧 ) +s ( 𝑥 ·s 𝑧𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑧𝑅 ) ) ) } ) ) |s ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑎 = ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) +s ( 𝑥 ·s 𝑧 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) +s ( 𝑥 ·s 𝑧 ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( 𝑥 ·s 𝑦 ) +s ( ( ( 𝑥𝐿 ·s 𝑧 ) +s ( 𝑥 ·s 𝑧𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑧𝑅 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( 𝑥 ·s 𝑦 ) +s ( ( ( 𝑥𝑅 ·s 𝑧 ) +s ( 𝑥 ·s 𝑧𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑧𝐿 ) ) ) } ) ) ) ) |
121 |
48 49 50
|
addsdilem1 |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ) ) → ( 𝑥 ·s ( 𝑦 +s 𝑧 ) ) = ( ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 +s 𝑧 ) ) +s ( 𝑥 ·s ( 𝑦𝐿 +s 𝑧 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝐿 +s 𝑧 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 +s 𝑧 ) ) +s ( 𝑥 ·s ( 𝑦 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦 +s 𝑧𝐿 ) ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 +s 𝑧 ) ) +s ( 𝑥 ·s ( 𝑦𝑅 +s 𝑧 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝑅 +s 𝑧 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 +s 𝑧 ) ) +s ( 𝑥 ·s ( 𝑦 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦 +s 𝑧𝑅 ) ) ) } ) ) |s ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 +s 𝑧 ) ) +s ( 𝑥 ·s ( 𝑦𝑅 +s 𝑧 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝑅 +s 𝑧 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 +s 𝑧 ) ) +s ( 𝑥 ·s ( 𝑦 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦 +s 𝑧𝑅 ) ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 +s 𝑧 ) ) +s ( 𝑥 ·s ( 𝑦𝐿 +s 𝑧 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝐿 +s 𝑧 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 +s 𝑧 ) ) +s ( 𝑥 ·s ( 𝑦 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦 +s 𝑧𝐿 ) ) ) } ) ) ) ) |
122 |
48 49 50
|
addsdilem2 |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ) ) → ( ( 𝑥 ·s 𝑦 ) +s ( 𝑥 ·s 𝑧 ) ) = ( ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) +s ( 𝑥 ·s 𝑧 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑎 = ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) +s ( 𝑥 ·s 𝑧 ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( 𝑥 ·s 𝑦 ) +s ( ( ( 𝑥𝐿 ·s 𝑧 ) +s ( 𝑥 ·s 𝑧𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑧𝐿 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( 𝑥 ·s 𝑦 ) +s ( ( ( 𝑥𝑅 ·s 𝑧 ) +s ( 𝑥 ·s 𝑧𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑧𝑅 ) ) ) } ) ) |s ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑎 = ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) +s ( 𝑥 ·s 𝑧 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑎 = ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) +s ( 𝑥 ·s 𝑧 ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( 𝑥 ·s 𝑦 ) +s ( ( ( 𝑥𝐿 ·s 𝑧 ) +s ( 𝑥 ·s 𝑧𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑧𝑅 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( 𝑥 ·s 𝑦 ) +s ( ( ( 𝑥𝑅 ·s 𝑧 ) +s ( 𝑥 ·s 𝑧𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑧𝐿 ) ) ) } ) ) ) ) |
123 |
120 121 122
|
3eqtr4d |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ) ) → ( 𝑥 ·s ( 𝑦 +s 𝑧 ) ) = ( ( 𝑥 ·s 𝑦 ) +s ( 𝑥 ·s 𝑧 ) ) ) |
124 |
123
|
ex |
⊢ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) → ( ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 ·s ( 𝑦 +s 𝑧 ) ) = ( ( 𝑥𝑂 ·s 𝑦 ) +s ( 𝑥𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 ·s ( 𝑦𝑂 +s 𝑧 ) ) = ( ( 𝑥 ·s 𝑦𝑂 ) +s ( 𝑥 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 𝑥 ·s ( 𝑦 +s 𝑧𝑂 ) ) = ( ( 𝑥 ·s 𝑦 ) +s ( 𝑥 ·s 𝑧𝑂 ) ) ) → ( 𝑥 ·s ( 𝑦 +s 𝑧 ) ) = ( ( 𝑥 ·s 𝑦 ) +s ( 𝑥 ·s 𝑧 ) ) ) ) |
125 |
5 10 15 20 25 28 32 37 42 47 124
|
no3inds |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( 𝐴 ·s ( 𝐵 +s 𝐶 ) ) = ( ( 𝐴 ·s 𝐵 ) +s ( 𝐴 ·s 𝐶 ) ) ) |