Metamath Proof Explorer
Description: Distributive law for surreal numbers. Commuted form of part of theorem
7 of Conway p. 19. (Contributed by Scott Fenton, 9-Mar-2025)
|
|
Ref |
Expression |
|
Hypotheses |
addsdid.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
|
|
addsdid.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
|
|
addsdid.3 |
⊢ ( 𝜑 → 𝐶 ∈ No ) |
|
Assertion |
addsdid |
⊢ ( 𝜑 → ( 𝐴 ·s ( 𝐵 +s 𝐶 ) ) = ( ( 𝐴 ·s 𝐵 ) +s ( 𝐴 ·s 𝐶 ) ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
addsdid.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
2 |
|
addsdid.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
3 |
|
addsdid.3 |
⊢ ( 𝜑 → 𝐶 ∈ No ) |
4 |
|
addsdi |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( 𝐴 ·s ( 𝐵 +s 𝐶 ) ) = ( ( 𝐴 ·s 𝐵 ) +s ( 𝐴 ·s 𝐶 ) ) ) |
5 |
1 2 3 4
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 ·s ( 𝐵 +s 𝐶 ) ) = ( ( 𝐴 ·s 𝐵 ) +s ( 𝐴 ·s 𝐶 ) ) ) |