Metamath Proof Explorer


Theorem addsdid

Description: Distributive law for surreal numbers. Commuted form of part of theorem 7 of Conway p. 19. (Contributed by Scott Fenton, 9-Mar-2025)

Ref Expression
Hypotheses addsdid.1 ( 𝜑𝐴 No )
addsdid.2 ( 𝜑𝐵 No )
addsdid.3 ( 𝜑𝐶 No )
Assertion addsdid ( 𝜑 → ( 𝐴 ·s ( 𝐵 +s 𝐶 ) ) = ( ( 𝐴 ·s 𝐵 ) +s ( 𝐴 ·s 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 addsdid.1 ( 𝜑𝐴 No )
2 addsdid.2 ( 𝜑𝐵 No )
3 addsdid.3 ( 𝜑𝐶 No )
4 addsdi ( ( 𝐴 No 𝐵 No 𝐶 No ) → ( 𝐴 ·s ( 𝐵 +s 𝐶 ) ) = ( ( 𝐴 ·s 𝐵 ) +s ( 𝐴 ·s 𝐶 ) ) )
5 1 2 3 4 syl3anc ( 𝜑 → ( 𝐴 ·s ( 𝐵 +s 𝐶 ) ) = ( ( 𝐴 ·s 𝐵 ) +s ( 𝐴 ·s 𝐶 ) ) )