Step |
Hyp |
Ref |
Expression |
1 |
|
addsdilem.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
2 |
|
addsdilem.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
3 |
|
addsdilem.3 |
⊢ ( 𝜑 → 𝐶 ∈ No ) |
4 |
|
lltropt |
⊢ ( L ‘ 𝐴 ) <<s ( R ‘ 𝐴 ) |
5 |
4
|
a1i |
⊢ ( 𝜑 → ( L ‘ 𝐴 ) <<s ( R ‘ 𝐴 ) ) |
6 |
2 3
|
addscut2 |
⊢ ( 𝜑 → ( { 𝑡 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑡 = ( 𝑦𝐿 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝐿 ) } ) <<s ( { 𝑡 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑡 = ( 𝑦𝑅 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝑅 ) } ) ) |
7 |
|
lrcut |
⊢ ( 𝐴 ∈ No → ( ( L ‘ 𝐴 ) |s ( R ‘ 𝐴 ) ) = 𝐴 ) |
8 |
1 7
|
syl |
⊢ ( 𝜑 → ( ( L ‘ 𝐴 ) |s ( R ‘ 𝐴 ) ) = 𝐴 ) |
9 |
8
|
eqcomd |
⊢ ( 𝜑 → 𝐴 = ( ( L ‘ 𝐴 ) |s ( R ‘ 𝐴 ) ) ) |
10 |
|
addsval2 |
⊢ ( ( 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( 𝐵 +s 𝐶 ) = ( ( { 𝑡 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑡 = ( 𝑦𝐿 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝐿 ) } ) |s ( { 𝑡 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑡 = ( 𝑦𝑅 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝑅 ) } ) ) ) |
11 |
2 3 10
|
syl2anc |
⊢ ( 𝜑 → ( 𝐵 +s 𝐶 ) = ( ( { 𝑡 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑡 = ( 𝑦𝐿 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝐿 ) } ) |s ( { 𝑡 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑡 = ( 𝑦𝑅 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝑅 ) } ) ) ) |
12 |
5 6 9 11
|
mulsunif |
⊢ ( 𝜑 → ( 𝐴 ·s ( 𝐵 +s 𝐶 ) ) = ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑏 ∈ ( { 𝑡 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑡 = ( 𝑦𝐿 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝐿 ) } ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑏 ∈ ( { 𝑡 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑡 = ( 𝑦𝑅 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝑅 ) } ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) } ) |s ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑏 ∈ ( { 𝑡 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑡 = ( 𝑦𝑅 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝑅 ) } ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑏 ∈ ( { 𝑡 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑡 = ( 𝑦𝐿 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝐿 ) } ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) } ) ) ) |
13 |
|
unab |
⊢ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) } ) = { 𝑎 ∣ ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) ∨ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) ) } |
14 |
|
r19.43 |
⊢ ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ( ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) ∨ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) ) ↔ ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) ∨ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) ) ) |
15 |
|
rexun |
⊢ ( ∃ 𝑏 ∈ ( { 𝑡 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑡 = ( 𝑦𝐿 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝐿 ) } ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ↔ ( ∃ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑡 = ( 𝑦𝐿 +s 𝐶 ) } 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ∨ ∃ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝐿 ) } 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ) |
16 |
|
eqeq1 |
⊢ ( 𝑡 = 𝑏 → ( 𝑡 = ( 𝑦𝐿 +s 𝐶 ) ↔ 𝑏 = ( 𝑦𝐿 +s 𝐶 ) ) ) |
17 |
16
|
rexbidv |
⊢ ( 𝑡 = 𝑏 → ( ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑡 = ( 𝑦𝐿 +s 𝐶 ) ↔ ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑏 = ( 𝑦𝐿 +s 𝐶 ) ) ) |
18 |
17
|
rexab |
⊢ ( ∃ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑡 = ( 𝑦𝐿 +s 𝐶 ) } 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ↔ ∃ 𝑏 ( ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑏 = ( 𝑦𝐿 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ) |
19 |
|
rexcom4 |
⊢ ( ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) ∃ 𝑏 ( 𝑏 = ( 𝑦𝐿 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ↔ ∃ 𝑏 ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) ( 𝑏 = ( 𝑦𝐿 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ) |
20 |
|
ovex |
⊢ ( 𝑦𝐿 +s 𝐶 ) ∈ V |
21 |
|
oveq2 |
⊢ ( 𝑏 = ( 𝑦𝐿 +s 𝐶 ) → ( 𝐴 ·s 𝑏 ) = ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) |
22 |
21
|
oveq2d |
⊢ ( 𝑏 = ( 𝑦𝐿 +s 𝐶 ) → ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) = ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) ) |
23 |
|
oveq2 |
⊢ ( 𝑏 = ( 𝑦𝐿 +s 𝐶 ) → ( 𝑥𝐿 ·s 𝑏 ) = ( 𝑥𝐿 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) |
24 |
22 23
|
oveq12d |
⊢ ( 𝑏 = ( 𝑦𝐿 +s 𝐶 ) → ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) ) |
25 |
24
|
eqeq2d |
⊢ ( 𝑏 = ( 𝑦𝐿 +s 𝐶 ) → ( 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ↔ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) ) ) |
26 |
20 25
|
ceqsexv |
⊢ ( ∃ 𝑏 ( 𝑏 = ( 𝑦𝐿 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ↔ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) ) |
27 |
26
|
rexbii |
⊢ ( ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) ∃ 𝑏 ( 𝑏 = ( 𝑦𝐿 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ↔ ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) ) |
28 |
|
r19.41v |
⊢ ( ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) ( 𝑏 = ( 𝑦𝐿 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ↔ ( ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑏 = ( 𝑦𝐿 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ) |
29 |
28
|
exbii |
⊢ ( ∃ 𝑏 ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) ( 𝑏 = ( 𝑦𝐿 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ↔ ∃ 𝑏 ( ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑏 = ( 𝑦𝐿 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ) |
30 |
19 27 29
|
3bitr3ri |
⊢ ( ∃ 𝑏 ( ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑏 = ( 𝑦𝐿 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ↔ ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) ) |
31 |
18 30
|
bitri |
⊢ ( ∃ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑡 = ( 𝑦𝐿 +s 𝐶 ) } 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ↔ ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) ) |
32 |
|
eqeq1 |
⊢ ( 𝑡 = 𝑏 → ( 𝑡 = ( 𝐵 +s 𝑧𝐿 ) ↔ 𝑏 = ( 𝐵 +s 𝑧𝐿 ) ) ) |
33 |
32
|
rexbidv |
⊢ ( 𝑡 = 𝑏 → ( ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝐿 ) ↔ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑏 = ( 𝐵 +s 𝑧𝐿 ) ) ) |
34 |
33
|
rexab |
⊢ ( ∃ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝐿 ) } 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ↔ ∃ 𝑏 ( ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑏 = ( 𝐵 +s 𝑧𝐿 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ) |
35 |
|
rexcom4 |
⊢ ( ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) ∃ 𝑏 ( 𝑏 = ( 𝐵 +s 𝑧𝐿 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ↔ ∃ 𝑏 ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) ( 𝑏 = ( 𝐵 +s 𝑧𝐿 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ) |
36 |
|
ovex |
⊢ ( 𝐵 +s 𝑧𝐿 ) ∈ V |
37 |
|
oveq2 |
⊢ ( 𝑏 = ( 𝐵 +s 𝑧𝐿 ) → ( 𝐴 ·s 𝑏 ) = ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) |
38 |
37
|
oveq2d |
⊢ ( 𝑏 = ( 𝐵 +s 𝑧𝐿 ) → ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) = ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) ) |
39 |
|
oveq2 |
⊢ ( 𝑏 = ( 𝐵 +s 𝑧𝐿 ) → ( 𝑥𝐿 ·s 𝑏 ) = ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) |
40 |
38 39
|
oveq12d |
⊢ ( 𝑏 = ( 𝐵 +s 𝑧𝐿 ) → ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) ) |
41 |
40
|
eqeq2d |
⊢ ( 𝑏 = ( 𝐵 +s 𝑧𝐿 ) → ( 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ↔ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) ) ) |
42 |
36 41
|
ceqsexv |
⊢ ( ∃ 𝑏 ( 𝑏 = ( 𝐵 +s 𝑧𝐿 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ↔ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) ) |
43 |
42
|
rexbii |
⊢ ( ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) ∃ 𝑏 ( 𝑏 = ( 𝐵 +s 𝑧𝐿 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ↔ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) ) |
44 |
|
r19.41v |
⊢ ( ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) ( 𝑏 = ( 𝐵 +s 𝑧𝐿 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ↔ ( ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑏 = ( 𝐵 +s 𝑧𝐿 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ) |
45 |
44
|
exbii |
⊢ ( ∃ 𝑏 ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) ( 𝑏 = ( 𝐵 +s 𝑧𝐿 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ↔ ∃ 𝑏 ( ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑏 = ( 𝐵 +s 𝑧𝐿 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ) |
46 |
35 43 45
|
3bitr3ri |
⊢ ( ∃ 𝑏 ( ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑏 = ( 𝐵 +s 𝑧𝐿 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ↔ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) ) |
47 |
34 46
|
bitri |
⊢ ( ∃ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝐿 ) } 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ↔ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) ) |
48 |
31 47
|
orbi12i |
⊢ ( ( ∃ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑡 = ( 𝑦𝐿 +s 𝐶 ) } 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ∨ ∃ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝐿 ) } 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ↔ ( ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) ∨ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) ) ) |
49 |
15 48
|
bitr2i |
⊢ ( ( ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) ∨ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) ) ↔ ∃ 𝑏 ∈ ( { 𝑡 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑡 = ( 𝑦𝐿 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝐿 ) } ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) |
50 |
49
|
rexbii |
⊢ ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ( ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) ∨ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) ) ↔ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑏 ∈ ( { 𝑡 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑡 = ( 𝑦𝐿 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝐿 ) } ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) |
51 |
14 50
|
bitr3i |
⊢ ( ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) ∨ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) ) ↔ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑏 ∈ ( { 𝑡 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑡 = ( 𝑦𝐿 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝐿 ) } ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) |
52 |
51
|
abbii |
⊢ { 𝑎 ∣ ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) ∨ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) ) } = { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑏 ∈ ( { 𝑡 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑡 = ( 𝑦𝐿 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝐿 ) } ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) } |
53 |
13 52
|
eqtri |
⊢ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) } ) = { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑏 ∈ ( { 𝑡 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑡 = ( 𝑦𝐿 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝐿 ) } ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) } |
54 |
|
unab |
⊢ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) } ) = { 𝑎 ∣ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) ∨ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) ) } |
55 |
|
r19.43 |
⊢ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ( ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) ∨ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) ) ↔ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) ∨ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) ) ) |
56 |
|
rexun |
⊢ ( ∃ 𝑏 ∈ ( { 𝑡 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑡 = ( 𝑦𝑅 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝑅 ) } ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ↔ ( ∃ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑡 = ( 𝑦𝑅 +s 𝐶 ) } 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ∨ ∃ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝑅 ) } 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ) |
57 |
|
eqeq1 |
⊢ ( 𝑡 = 𝑏 → ( 𝑡 = ( 𝑦𝑅 +s 𝐶 ) ↔ 𝑏 = ( 𝑦𝑅 +s 𝐶 ) ) ) |
58 |
57
|
rexbidv |
⊢ ( 𝑡 = 𝑏 → ( ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑡 = ( 𝑦𝑅 +s 𝐶 ) ↔ ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑏 = ( 𝑦𝑅 +s 𝐶 ) ) ) |
59 |
58
|
rexab |
⊢ ( ∃ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑡 = ( 𝑦𝑅 +s 𝐶 ) } 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ↔ ∃ 𝑏 ( ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑏 = ( 𝑦𝑅 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ) |
60 |
|
rexcom4 |
⊢ ( ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) ∃ 𝑏 ( 𝑏 = ( 𝑦𝑅 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ↔ ∃ 𝑏 ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) ( 𝑏 = ( 𝑦𝑅 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ) |
61 |
|
ovex |
⊢ ( 𝑦𝑅 +s 𝐶 ) ∈ V |
62 |
|
oveq2 |
⊢ ( 𝑏 = ( 𝑦𝑅 +s 𝐶 ) → ( 𝐴 ·s 𝑏 ) = ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) |
63 |
62
|
oveq2d |
⊢ ( 𝑏 = ( 𝑦𝑅 +s 𝐶 ) → ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) = ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) ) |
64 |
|
oveq2 |
⊢ ( 𝑏 = ( 𝑦𝑅 +s 𝐶 ) → ( 𝑥𝑅 ·s 𝑏 ) = ( 𝑥𝑅 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) |
65 |
63 64
|
oveq12d |
⊢ ( 𝑏 = ( 𝑦𝑅 +s 𝐶 ) → ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) ) |
66 |
65
|
eqeq2d |
⊢ ( 𝑏 = ( 𝑦𝑅 +s 𝐶 ) → ( 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ↔ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) ) ) |
67 |
61 66
|
ceqsexv |
⊢ ( ∃ 𝑏 ( 𝑏 = ( 𝑦𝑅 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ↔ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) ) |
68 |
67
|
rexbii |
⊢ ( ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) ∃ 𝑏 ( 𝑏 = ( 𝑦𝑅 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ↔ ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) ) |
69 |
|
r19.41v |
⊢ ( ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) ( 𝑏 = ( 𝑦𝑅 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ↔ ( ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑏 = ( 𝑦𝑅 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ) |
70 |
69
|
exbii |
⊢ ( ∃ 𝑏 ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) ( 𝑏 = ( 𝑦𝑅 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ↔ ∃ 𝑏 ( ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑏 = ( 𝑦𝑅 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ) |
71 |
60 68 70
|
3bitr3ri |
⊢ ( ∃ 𝑏 ( ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑏 = ( 𝑦𝑅 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ↔ ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) ) |
72 |
59 71
|
bitri |
⊢ ( ∃ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑡 = ( 𝑦𝑅 +s 𝐶 ) } 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ↔ ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) ) |
73 |
|
eqeq1 |
⊢ ( 𝑡 = 𝑏 → ( 𝑡 = ( 𝐵 +s 𝑧𝑅 ) ↔ 𝑏 = ( 𝐵 +s 𝑧𝑅 ) ) ) |
74 |
73
|
rexbidv |
⊢ ( 𝑡 = 𝑏 → ( ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝑅 ) ↔ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑏 = ( 𝐵 +s 𝑧𝑅 ) ) ) |
75 |
74
|
rexab |
⊢ ( ∃ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝑅 ) } 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ↔ ∃ 𝑏 ( ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑏 = ( 𝐵 +s 𝑧𝑅 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ) |
76 |
|
rexcom4 |
⊢ ( ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) ∃ 𝑏 ( 𝑏 = ( 𝐵 +s 𝑧𝑅 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ↔ ∃ 𝑏 ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) ( 𝑏 = ( 𝐵 +s 𝑧𝑅 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ) |
77 |
|
ovex |
⊢ ( 𝐵 +s 𝑧𝑅 ) ∈ V |
78 |
|
oveq2 |
⊢ ( 𝑏 = ( 𝐵 +s 𝑧𝑅 ) → ( 𝐴 ·s 𝑏 ) = ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) |
79 |
78
|
oveq2d |
⊢ ( 𝑏 = ( 𝐵 +s 𝑧𝑅 ) → ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) = ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) ) |
80 |
|
oveq2 |
⊢ ( 𝑏 = ( 𝐵 +s 𝑧𝑅 ) → ( 𝑥𝑅 ·s 𝑏 ) = ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) |
81 |
79 80
|
oveq12d |
⊢ ( 𝑏 = ( 𝐵 +s 𝑧𝑅 ) → ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) ) |
82 |
81
|
eqeq2d |
⊢ ( 𝑏 = ( 𝐵 +s 𝑧𝑅 ) → ( 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ↔ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) ) ) |
83 |
77 82
|
ceqsexv |
⊢ ( ∃ 𝑏 ( 𝑏 = ( 𝐵 +s 𝑧𝑅 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ↔ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) ) |
84 |
83
|
rexbii |
⊢ ( ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) ∃ 𝑏 ( 𝑏 = ( 𝐵 +s 𝑧𝑅 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ↔ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) ) |
85 |
|
r19.41v |
⊢ ( ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) ( 𝑏 = ( 𝐵 +s 𝑧𝑅 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ↔ ( ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑏 = ( 𝐵 +s 𝑧𝑅 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ) |
86 |
85
|
exbii |
⊢ ( ∃ 𝑏 ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) ( 𝑏 = ( 𝐵 +s 𝑧𝑅 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ↔ ∃ 𝑏 ( ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑏 = ( 𝐵 +s 𝑧𝑅 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ) |
87 |
76 84 86
|
3bitr3ri |
⊢ ( ∃ 𝑏 ( ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑏 = ( 𝐵 +s 𝑧𝑅 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ↔ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) ) |
88 |
75 87
|
bitri |
⊢ ( ∃ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝑅 ) } 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ↔ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) ) |
89 |
72 88
|
orbi12i |
⊢ ( ( ∃ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑡 = ( 𝑦𝑅 +s 𝐶 ) } 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ∨ ∃ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝑅 ) } 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ↔ ( ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) ∨ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) ) ) |
90 |
56 89
|
bitr2i |
⊢ ( ( ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) ∨ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) ) ↔ ∃ 𝑏 ∈ ( { 𝑡 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑡 = ( 𝑦𝑅 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝑅 ) } ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) |
91 |
90
|
rexbii |
⊢ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ( ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) ∨ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) ) ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑏 ∈ ( { 𝑡 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑡 = ( 𝑦𝑅 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝑅 ) } ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) |
92 |
55 91
|
bitr3i |
⊢ ( ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) ∨ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) ) ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑏 ∈ ( { 𝑡 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑡 = ( 𝑦𝑅 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝑅 ) } ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) |
93 |
92
|
abbii |
⊢ { 𝑎 ∣ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) ∨ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) ) } = { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑏 ∈ ( { 𝑡 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑡 = ( 𝑦𝑅 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝑅 ) } ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) } |
94 |
54 93
|
eqtri |
⊢ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) } ) = { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑏 ∈ ( { 𝑡 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑡 = ( 𝑦𝑅 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝑅 ) } ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) } |
95 |
53 94
|
uneq12i |
⊢ ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) } ) ) = ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑏 ∈ ( { 𝑡 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑡 = ( 𝑦𝐿 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝐿 ) } ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑏 ∈ ( { 𝑡 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑡 = ( 𝑦𝑅 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝑅 ) } ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) } ) |
96 |
|
unab |
⊢ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) } ) = { 𝑎 ∣ ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) ∨ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) ) } |
97 |
|
r19.43 |
⊢ ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ( ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) ∨ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) ) ↔ ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) ∨ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) ) ) |
98 |
|
rexun |
⊢ ( ∃ 𝑏 ∈ ( { 𝑡 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑡 = ( 𝑦𝑅 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝑅 ) } ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ↔ ( ∃ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑡 = ( 𝑦𝑅 +s 𝐶 ) } 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ∨ ∃ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝑅 ) } 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ) |
99 |
58
|
rexab |
⊢ ( ∃ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑡 = ( 𝑦𝑅 +s 𝐶 ) } 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ↔ ∃ 𝑏 ( ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑏 = ( 𝑦𝑅 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ) |
100 |
|
rexcom4 |
⊢ ( ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) ∃ 𝑏 ( 𝑏 = ( 𝑦𝑅 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ↔ ∃ 𝑏 ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) ( 𝑏 = ( 𝑦𝑅 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ) |
101 |
62
|
oveq2d |
⊢ ( 𝑏 = ( 𝑦𝑅 +s 𝐶 ) → ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) = ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) ) |
102 |
|
oveq2 |
⊢ ( 𝑏 = ( 𝑦𝑅 +s 𝐶 ) → ( 𝑥𝐿 ·s 𝑏 ) = ( 𝑥𝐿 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) |
103 |
101 102
|
oveq12d |
⊢ ( 𝑏 = ( 𝑦𝑅 +s 𝐶 ) → ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) ) |
104 |
103
|
eqeq2d |
⊢ ( 𝑏 = ( 𝑦𝑅 +s 𝐶 ) → ( 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ↔ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) ) ) |
105 |
61 104
|
ceqsexv |
⊢ ( ∃ 𝑏 ( 𝑏 = ( 𝑦𝑅 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ↔ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) ) |
106 |
105
|
rexbii |
⊢ ( ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) ∃ 𝑏 ( 𝑏 = ( 𝑦𝑅 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ↔ ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) ) |
107 |
|
r19.41v |
⊢ ( ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) ( 𝑏 = ( 𝑦𝑅 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ↔ ( ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑏 = ( 𝑦𝑅 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ) |
108 |
107
|
exbii |
⊢ ( ∃ 𝑏 ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) ( 𝑏 = ( 𝑦𝑅 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ↔ ∃ 𝑏 ( ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑏 = ( 𝑦𝑅 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ) |
109 |
100 106 108
|
3bitr3ri |
⊢ ( ∃ 𝑏 ( ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑏 = ( 𝑦𝑅 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ↔ ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) ) |
110 |
99 109
|
bitri |
⊢ ( ∃ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑡 = ( 𝑦𝑅 +s 𝐶 ) } 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ↔ ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) ) |
111 |
74
|
rexab |
⊢ ( ∃ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝑅 ) } 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ↔ ∃ 𝑏 ( ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑏 = ( 𝐵 +s 𝑧𝑅 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ) |
112 |
|
rexcom4 |
⊢ ( ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) ∃ 𝑏 ( 𝑏 = ( 𝐵 +s 𝑧𝑅 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ↔ ∃ 𝑏 ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) ( 𝑏 = ( 𝐵 +s 𝑧𝑅 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ) |
113 |
78
|
oveq2d |
⊢ ( 𝑏 = ( 𝐵 +s 𝑧𝑅 ) → ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) = ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) ) |
114 |
|
oveq2 |
⊢ ( 𝑏 = ( 𝐵 +s 𝑧𝑅 ) → ( 𝑥𝐿 ·s 𝑏 ) = ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) |
115 |
113 114
|
oveq12d |
⊢ ( 𝑏 = ( 𝐵 +s 𝑧𝑅 ) → ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) ) |
116 |
115
|
eqeq2d |
⊢ ( 𝑏 = ( 𝐵 +s 𝑧𝑅 ) → ( 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ↔ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) ) ) |
117 |
77 116
|
ceqsexv |
⊢ ( ∃ 𝑏 ( 𝑏 = ( 𝐵 +s 𝑧𝑅 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ↔ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) ) |
118 |
117
|
rexbii |
⊢ ( ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) ∃ 𝑏 ( 𝑏 = ( 𝐵 +s 𝑧𝑅 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ↔ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) ) |
119 |
|
r19.41v |
⊢ ( ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) ( 𝑏 = ( 𝐵 +s 𝑧𝑅 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ↔ ( ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑏 = ( 𝐵 +s 𝑧𝑅 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ) |
120 |
119
|
exbii |
⊢ ( ∃ 𝑏 ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) ( 𝑏 = ( 𝐵 +s 𝑧𝑅 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ↔ ∃ 𝑏 ( ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑏 = ( 𝐵 +s 𝑧𝑅 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ) |
121 |
112 118 120
|
3bitr3ri |
⊢ ( ∃ 𝑏 ( ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑏 = ( 𝐵 +s 𝑧𝑅 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ↔ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) ) |
122 |
111 121
|
bitri |
⊢ ( ∃ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝑅 ) } 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ↔ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) ) |
123 |
110 122
|
orbi12i |
⊢ ( ( ∃ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑡 = ( 𝑦𝑅 +s 𝐶 ) } 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ∨ ∃ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝑅 ) } 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ↔ ( ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) ∨ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) ) ) |
124 |
98 123
|
bitr2i |
⊢ ( ( ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) ∨ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) ) ↔ ∃ 𝑏 ∈ ( { 𝑡 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑡 = ( 𝑦𝑅 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝑅 ) } ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) |
125 |
124
|
rexbii |
⊢ ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ( ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) ∨ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) ) ↔ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑏 ∈ ( { 𝑡 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑡 = ( 𝑦𝑅 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝑅 ) } ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) |
126 |
97 125
|
bitr3i |
⊢ ( ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) ∨ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) ) ↔ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑏 ∈ ( { 𝑡 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑡 = ( 𝑦𝑅 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝑅 ) } ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) |
127 |
126
|
abbii |
⊢ { 𝑎 ∣ ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) ∨ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) ) } = { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑏 ∈ ( { 𝑡 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑡 = ( 𝑦𝑅 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝑅 ) } ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) } |
128 |
96 127
|
eqtri |
⊢ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) } ) = { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑏 ∈ ( { 𝑡 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑡 = ( 𝑦𝑅 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝑅 ) } ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) } |
129 |
|
unab |
⊢ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) } ) = { 𝑎 ∣ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) ∨ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) ) } |
130 |
|
r19.43 |
⊢ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ( ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) ∨ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) ) ↔ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) ∨ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) ) ) |
131 |
|
rexun |
⊢ ( ∃ 𝑏 ∈ ( { 𝑡 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑡 = ( 𝑦𝐿 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝐿 ) } ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ↔ ( ∃ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑡 = ( 𝑦𝐿 +s 𝐶 ) } 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ∨ ∃ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝐿 ) } 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ) |
132 |
17
|
rexab |
⊢ ( ∃ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑡 = ( 𝑦𝐿 +s 𝐶 ) } 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ↔ ∃ 𝑏 ( ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑏 = ( 𝑦𝐿 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ) |
133 |
|
rexcom4 |
⊢ ( ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) ∃ 𝑏 ( 𝑏 = ( 𝑦𝐿 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ↔ ∃ 𝑏 ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) ( 𝑏 = ( 𝑦𝐿 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ) |
134 |
21
|
oveq2d |
⊢ ( 𝑏 = ( 𝑦𝐿 +s 𝐶 ) → ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) = ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) ) |
135 |
|
oveq2 |
⊢ ( 𝑏 = ( 𝑦𝐿 +s 𝐶 ) → ( 𝑥𝑅 ·s 𝑏 ) = ( 𝑥𝑅 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) |
136 |
134 135
|
oveq12d |
⊢ ( 𝑏 = ( 𝑦𝐿 +s 𝐶 ) → ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) ) |
137 |
136
|
eqeq2d |
⊢ ( 𝑏 = ( 𝑦𝐿 +s 𝐶 ) → ( 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ↔ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) ) ) |
138 |
20 137
|
ceqsexv |
⊢ ( ∃ 𝑏 ( 𝑏 = ( 𝑦𝐿 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ↔ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) ) |
139 |
138
|
rexbii |
⊢ ( ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) ∃ 𝑏 ( 𝑏 = ( 𝑦𝐿 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ↔ ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) ) |
140 |
|
r19.41v |
⊢ ( ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) ( 𝑏 = ( 𝑦𝐿 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ↔ ( ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑏 = ( 𝑦𝐿 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ) |
141 |
140
|
exbii |
⊢ ( ∃ 𝑏 ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) ( 𝑏 = ( 𝑦𝐿 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ↔ ∃ 𝑏 ( ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑏 = ( 𝑦𝐿 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ) |
142 |
133 139 141
|
3bitr3ri |
⊢ ( ∃ 𝑏 ( ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑏 = ( 𝑦𝐿 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ↔ ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) ) |
143 |
132 142
|
bitri |
⊢ ( ∃ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑡 = ( 𝑦𝐿 +s 𝐶 ) } 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ↔ ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) ) |
144 |
33
|
rexab |
⊢ ( ∃ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝐿 ) } 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ↔ ∃ 𝑏 ( ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑏 = ( 𝐵 +s 𝑧𝐿 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ) |
145 |
|
rexcom4 |
⊢ ( ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) ∃ 𝑏 ( 𝑏 = ( 𝐵 +s 𝑧𝐿 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ↔ ∃ 𝑏 ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) ( 𝑏 = ( 𝐵 +s 𝑧𝐿 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ) |
146 |
37
|
oveq2d |
⊢ ( 𝑏 = ( 𝐵 +s 𝑧𝐿 ) → ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) = ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) ) |
147 |
|
oveq2 |
⊢ ( 𝑏 = ( 𝐵 +s 𝑧𝐿 ) → ( 𝑥𝑅 ·s 𝑏 ) = ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) |
148 |
146 147
|
oveq12d |
⊢ ( 𝑏 = ( 𝐵 +s 𝑧𝐿 ) → ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) ) |
149 |
148
|
eqeq2d |
⊢ ( 𝑏 = ( 𝐵 +s 𝑧𝐿 ) → ( 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ↔ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) ) ) |
150 |
36 149
|
ceqsexv |
⊢ ( ∃ 𝑏 ( 𝑏 = ( 𝐵 +s 𝑧𝐿 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ↔ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) ) |
151 |
150
|
rexbii |
⊢ ( ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) ∃ 𝑏 ( 𝑏 = ( 𝐵 +s 𝑧𝐿 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ↔ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) ) |
152 |
|
r19.41v |
⊢ ( ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) ( 𝑏 = ( 𝐵 +s 𝑧𝐿 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ↔ ( ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑏 = ( 𝐵 +s 𝑧𝐿 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ) |
153 |
152
|
exbii |
⊢ ( ∃ 𝑏 ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) ( 𝑏 = ( 𝐵 +s 𝑧𝐿 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ↔ ∃ 𝑏 ( ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑏 = ( 𝐵 +s 𝑧𝐿 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ) |
154 |
145 151 153
|
3bitr3ri |
⊢ ( ∃ 𝑏 ( ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑏 = ( 𝐵 +s 𝑧𝐿 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ↔ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) ) |
155 |
144 154
|
bitri |
⊢ ( ∃ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝐿 ) } 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ↔ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) ) |
156 |
143 155
|
orbi12i |
⊢ ( ( ∃ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑡 = ( 𝑦𝐿 +s 𝐶 ) } 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ∨ ∃ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝐿 ) } 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ↔ ( ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) ∨ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) ) ) |
157 |
131 156
|
bitr2i |
⊢ ( ( ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) ∨ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) ) ↔ ∃ 𝑏 ∈ ( { 𝑡 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑡 = ( 𝑦𝐿 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝐿 ) } ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) |
158 |
157
|
rexbii |
⊢ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ( ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) ∨ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) ) ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑏 ∈ ( { 𝑡 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑡 = ( 𝑦𝐿 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝐿 ) } ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) |
159 |
130 158
|
bitr3i |
⊢ ( ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) ∨ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) ) ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑏 ∈ ( { 𝑡 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑡 = ( 𝑦𝐿 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝐿 ) } ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) |
160 |
159
|
abbii |
⊢ { 𝑎 ∣ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) ∨ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) ) } = { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑏 ∈ ( { 𝑡 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑡 = ( 𝑦𝐿 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝐿 ) } ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) } |
161 |
129 160
|
eqtri |
⊢ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) } ) = { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑏 ∈ ( { 𝑡 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑡 = ( 𝑦𝐿 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝐿 ) } ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) } |
162 |
128 161
|
uneq12i |
⊢ ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) } ) ) = ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑏 ∈ ( { 𝑡 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑡 = ( 𝑦𝑅 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝑅 ) } ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑏 ∈ ( { 𝑡 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑡 = ( 𝑦𝐿 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝐿 ) } ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) } ) |
163 |
95 162
|
oveq12i |
⊢ ( ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) } ) ) |s ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) } ) ) ) = ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑏 ∈ ( { 𝑡 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑡 = ( 𝑦𝐿 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝐿 ) } ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑏 ∈ ( { 𝑡 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑡 = ( 𝑦𝑅 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝑅 ) } ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) } ) |s ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑏 ∈ ( { 𝑡 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑡 = ( 𝑦𝑅 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝑅 ) } ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑏 ∈ ( { 𝑡 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑡 = ( 𝑦𝐿 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝐿 ) } ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) } ) ) |
164 |
12 163
|
eqtr4di |
⊢ ( 𝜑 → ( 𝐴 ·s ( 𝐵 +s 𝐶 ) ) = ( ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) } ) ) |s ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) } ) ) ) ) |