Step |
Hyp |
Ref |
Expression |
1 |
|
addsdilem.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
2 |
|
addsdilem.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
3 |
|
addsdilem.3 |
⊢ ( 𝜑 → 𝐶 ∈ No ) |
4 |
1 2
|
mulscut2 |
⊢ ( 𝜑 → ( { 𝑏 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑏 = ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) } ∪ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) } ) <<s ( { 𝑏 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) } ∪ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑏 = ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) } ) ) |
5 |
1 3
|
mulscut2 |
⊢ ( 𝜑 → ( { 𝑏 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑏 = ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑧𝐿 ) ) } ∪ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑏 = ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑧𝑅 ) ) } ) <<s ( { 𝑏 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑏 = ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑧𝑅 ) ) } ∪ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑏 = ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑧𝐿 ) ) } ) ) |
6 |
|
mulsval2 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 ·s 𝐵 ) = ( ( { 𝑏 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑏 = ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) } ∪ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) } ) |s ( { 𝑏 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) } ∪ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑏 = ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) } ) ) ) |
7 |
1 2 6
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ·s 𝐵 ) = ( ( { 𝑏 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑏 = ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) } ∪ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) } ) |s ( { 𝑏 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) } ∪ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑏 = ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) } ) ) ) |
8 |
|
mulsval2 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐶 ∈ No ) → ( 𝐴 ·s 𝐶 ) = ( ( { 𝑏 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑏 = ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑧𝐿 ) ) } ∪ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑏 = ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑧𝑅 ) ) } ) |s ( { 𝑏 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑏 = ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑧𝑅 ) ) } ∪ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑏 = ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑧𝐿 ) ) } ) ) ) |
9 |
1 3 8
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ·s 𝐶 ) = ( ( { 𝑏 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑏 = ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑧𝐿 ) ) } ∪ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑏 = ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑧𝑅 ) ) } ) |s ( { 𝑏 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑏 = ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑧𝑅 ) ) } ∪ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑏 = ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑧𝐿 ) ) } ) ) ) |
10 |
4 5 7 9
|
addsunif |
⊢ ( 𝜑 → ( ( 𝐴 ·s 𝐵 ) +s ( 𝐴 ·s 𝐶 ) ) = ( ( { 𝑎 ∣ ∃ 𝑡 ∈ ( { 𝑏 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑏 = ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) } ∪ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) } ) 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) } ∪ { 𝑎 ∣ ∃ 𝑡 ∈ ( { 𝑏 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑏 = ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑧𝐿 ) ) } ∪ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑏 = ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑧𝑅 ) ) } ) 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) } ) |s ( { 𝑎 ∣ ∃ 𝑡 ∈ ( { 𝑏 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) } ∪ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑏 = ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) } ) 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) } ∪ { 𝑎 ∣ ∃ 𝑡 ∈ ( { 𝑏 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑏 = ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑧𝑅 ) ) } ∪ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑏 = ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑧𝐿 ) ) } ) 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) } ) ) ) |
11 |
|
unab |
⊢ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) +s ( 𝐴 ·s 𝐶 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) +s ( 𝐴 ·s 𝐶 ) ) } ) = { 𝑎 ∣ ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) +s ( 𝐴 ·s 𝐶 ) ) ∨ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) +s ( 𝐴 ·s 𝐶 ) ) ) } |
12 |
|
rexun |
⊢ ( ∃ 𝑡 ∈ ( { 𝑏 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑏 = ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) } ∪ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) } ) 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ↔ ( ∃ 𝑡 ∈ { 𝑏 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑏 = ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) } 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ∨ ∃ 𝑡 ∈ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) } 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ) ) |
13 |
|
eqeq1 |
⊢ ( 𝑏 = 𝑡 → ( 𝑏 = ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) ↔ 𝑡 = ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) ) ) |
14 |
13
|
2rexbidv |
⊢ ( 𝑏 = 𝑡 → ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑏 = ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) ↔ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑡 = ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) ) ) |
15 |
14
|
rexab |
⊢ ( ∃ 𝑡 ∈ { 𝑏 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑏 = ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) } 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ↔ ∃ 𝑡 ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑡 = ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) ∧ 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ) ) |
16 |
|
rexcom4 |
⊢ ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑡 ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) ( 𝑡 = ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) ∧ 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ) ↔ ∃ 𝑡 ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) ( 𝑡 = ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) ∧ 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ) ) |
17 |
|
rexcom4 |
⊢ ( ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) ∃ 𝑡 ( 𝑡 = ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) ∧ 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ) ↔ ∃ 𝑡 ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) ( 𝑡 = ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) ∧ 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ) ) |
18 |
|
ovex |
⊢ ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) ∈ V |
19 |
|
oveq1 |
⊢ ( 𝑡 = ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) → ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) = ( ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) +s ( 𝐴 ·s 𝐶 ) ) ) |
20 |
19
|
eqeq2d |
⊢ ( 𝑡 = ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) → ( 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ↔ 𝑎 = ( ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) +s ( 𝐴 ·s 𝐶 ) ) ) ) |
21 |
18 20
|
ceqsexv |
⊢ ( ∃ 𝑡 ( 𝑡 = ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) ∧ 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ) ↔ 𝑎 = ( ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) +s ( 𝐴 ·s 𝐶 ) ) ) |
22 |
21
|
rexbii |
⊢ ( ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) ∃ 𝑡 ( 𝑡 = ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) ∧ 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ) ↔ ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) +s ( 𝐴 ·s 𝐶 ) ) ) |
23 |
17 22
|
bitr3i |
⊢ ( ∃ 𝑡 ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) ( 𝑡 = ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) ∧ 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ) ↔ ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) +s ( 𝐴 ·s 𝐶 ) ) ) |
24 |
23
|
rexbii |
⊢ ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑡 ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) ( 𝑡 = ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) ∧ 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ) ↔ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) +s ( 𝐴 ·s 𝐶 ) ) ) |
25 |
|
r19.41vv |
⊢ ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) ( 𝑡 = ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) ∧ 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ) ↔ ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑡 = ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) ∧ 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ) ) |
26 |
25
|
exbii |
⊢ ( ∃ 𝑡 ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) ( 𝑡 = ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) ∧ 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ) ↔ ∃ 𝑡 ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑡 = ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) ∧ 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ) ) |
27 |
16 24 26
|
3bitr3ri |
⊢ ( ∃ 𝑡 ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑡 = ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) ∧ 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ) ↔ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) +s ( 𝐴 ·s 𝐶 ) ) ) |
28 |
15 27
|
bitri |
⊢ ( ∃ 𝑡 ∈ { 𝑏 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑏 = ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) } 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ↔ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) +s ( 𝐴 ·s 𝐶 ) ) ) |
29 |
|
eqeq1 |
⊢ ( 𝑏 = 𝑡 → ( 𝑏 = ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) ↔ 𝑡 = ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) ) ) |
30 |
29
|
2rexbidv |
⊢ ( 𝑏 = 𝑡 → ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑡 = ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) ) ) |
31 |
30
|
rexab |
⊢ ( ∃ 𝑡 ∈ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) } 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ↔ ∃ 𝑡 ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑡 = ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) ∧ 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ) ) |
32 |
|
rexcom4 |
⊢ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑡 ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) ( 𝑡 = ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) ∧ 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ) ↔ ∃ 𝑡 ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) ( 𝑡 = ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) ∧ 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ) ) |
33 |
|
rexcom4 |
⊢ ( ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) ∃ 𝑡 ( 𝑡 = ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) ∧ 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ) ↔ ∃ 𝑡 ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) ( 𝑡 = ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) ∧ 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ) ) |
34 |
|
ovex |
⊢ ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) ∈ V |
35 |
|
oveq1 |
⊢ ( 𝑡 = ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) → ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) = ( ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) +s ( 𝐴 ·s 𝐶 ) ) ) |
36 |
35
|
eqeq2d |
⊢ ( 𝑡 = ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) → ( 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ↔ 𝑎 = ( ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) +s ( 𝐴 ·s 𝐶 ) ) ) ) |
37 |
34 36
|
ceqsexv |
⊢ ( ∃ 𝑡 ( 𝑡 = ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) ∧ 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ) ↔ 𝑎 = ( ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) +s ( 𝐴 ·s 𝐶 ) ) ) |
38 |
37
|
rexbii |
⊢ ( ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) ∃ 𝑡 ( 𝑡 = ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) ∧ 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ) ↔ ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) +s ( 𝐴 ·s 𝐶 ) ) ) |
39 |
33 38
|
bitr3i |
⊢ ( ∃ 𝑡 ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) ( 𝑡 = ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) ∧ 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ) ↔ ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) +s ( 𝐴 ·s 𝐶 ) ) ) |
40 |
39
|
rexbii |
⊢ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑡 ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) ( 𝑡 = ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) ∧ 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ) ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) +s ( 𝐴 ·s 𝐶 ) ) ) |
41 |
|
r19.41vv |
⊢ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) ( 𝑡 = ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) ∧ 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ) ↔ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑡 = ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) ∧ 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ) ) |
42 |
41
|
exbii |
⊢ ( ∃ 𝑡 ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) ( 𝑡 = ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) ∧ 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ) ↔ ∃ 𝑡 ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑡 = ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) ∧ 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ) ) |
43 |
32 40 42
|
3bitr3ri |
⊢ ( ∃ 𝑡 ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑡 = ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) ∧ 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ) ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) +s ( 𝐴 ·s 𝐶 ) ) ) |
44 |
31 43
|
bitri |
⊢ ( ∃ 𝑡 ∈ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) } 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) +s ( 𝐴 ·s 𝐶 ) ) ) |
45 |
28 44
|
orbi12i |
⊢ ( ( ∃ 𝑡 ∈ { 𝑏 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑏 = ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) } 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ∨ ∃ 𝑡 ∈ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) } 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ) ↔ ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) +s ( 𝐴 ·s 𝐶 ) ) ∨ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) +s ( 𝐴 ·s 𝐶 ) ) ) ) |
46 |
12 45
|
bitr2i |
⊢ ( ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) +s ( 𝐴 ·s 𝐶 ) ) ∨ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) +s ( 𝐴 ·s 𝐶 ) ) ) ↔ ∃ 𝑡 ∈ ( { 𝑏 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑏 = ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) } ∪ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) } ) 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ) |
47 |
46
|
abbii |
⊢ { 𝑎 ∣ ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) +s ( 𝐴 ·s 𝐶 ) ) ∨ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) +s ( 𝐴 ·s 𝐶 ) ) ) } = { 𝑎 ∣ ∃ 𝑡 ∈ ( { 𝑏 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑏 = ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) } ∪ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) } ) 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) } |
48 |
11 47
|
eqtri |
⊢ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) +s ( 𝐴 ·s 𝐶 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) +s ( 𝐴 ·s 𝐶 ) ) } ) = { 𝑎 ∣ ∃ 𝑡 ∈ ( { 𝑏 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑏 = ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) } ∪ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) } ) 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) } |
49 |
|
unab |
⊢ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑧𝐿 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑧𝑅 ) ) ) } ) = { 𝑎 ∣ ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑧𝐿 ) ) ) ∨ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑧𝑅 ) ) ) ) } |
50 |
|
rexun |
⊢ ( ∃ 𝑡 ∈ ( { 𝑏 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑏 = ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑧𝐿 ) ) } ∪ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑏 = ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑧𝑅 ) ) } ) 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ↔ ( ∃ 𝑡 ∈ { 𝑏 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑏 = ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑧𝐿 ) ) } 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ∨ ∃ 𝑡 ∈ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑏 = ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑧𝑅 ) ) } 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ) ) |
51 |
|
eqeq1 |
⊢ ( 𝑏 = 𝑡 → ( 𝑏 = ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑧𝐿 ) ) ↔ 𝑡 = ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑧𝐿 ) ) ) ) |
52 |
51
|
2rexbidv |
⊢ ( 𝑏 = 𝑡 → ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑏 = ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑧𝐿 ) ) ↔ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑡 = ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑧𝐿 ) ) ) ) |
53 |
52
|
rexab |
⊢ ( ∃ 𝑡 ∈ { 𝑏 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑏 = ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑧𝐿 ) ) } 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ↔ ∃ 𝑡 ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑡 = ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑧𝐿 ) ) ∧ 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ) ) |
54 |
|
rexcom4 |
⊢ ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑡 ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) ( 𝑡 = ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑧𝐿 ) ) ∧ 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ) ↔ ∃ 𝑡 ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) ( 𝑡 = ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑧𝐿 ) ) ∧ 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ) ) |
55 |
|
rexcom4 |
⊢ ( ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) ∃ 𝑡 ( 𝑡 = ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑧𝐿 ) ) ∧ 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ) ↔ ∃ 𝑡 ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) ( 𝑡 = ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑧𝐿 ) ) ∧ 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ) ) |
56 |
|
ovex |
⊢ ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑧𝐿 ) ) ∈ V |
57 |
|
oveq2 |
⊢ ( 𝑡 = ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑧𝐿 ) ) → ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑧𝐿 ) ) ) ) |
58 |
57
|
eqeq2d |
⊢ ( 𝑡 = ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑧𝐿 ) ) → ( 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ↔ 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑧𝐿 ) ) ) ) ) |
59 |
56 58
|
ceqsexv |
⊢ ( ∃ 𝑡 ( 𝑡 = ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑧𝐿 ) ) ∧ 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ) ↔ 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑧𝐿 ) ) ) ) |
60 |
59
|
rexbii |
⊢ ( ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) ∃ 𝑡 ( 𝑡 = ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑧𝐿 ) ) ∧ 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ) ↔ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑧𝐿 ) ) ) ) |
61 |
55 60
|
bitr3i |
⊢ ( ∃ 𝑡 ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) ( 𝑡 = ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑧𝐿 ) ) ∧ 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ) ↔ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑧𝐿 ) ) ) ) |
62 |
61
|
rexbii |
⊢ ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑡 ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) ( 𝑡 = ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑧𝐿 ) ) ∧ 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ) ↔ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑧𝐿 ) ) ) ) |
63 |
|
r19.41vv |
⊢ ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) ( 𝑡 = ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑧𝐿 ) ) ∧ 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ) ↔ ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑡 = ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑧𝐿 ) ) ∧ 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ) ) |
64 |
63
|
exbii |
⊢ ( ∃ 𝑡 ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) ( 𝑡 = ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑧𝐿 ) ) ∧ 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ) ↔ ∃ 𝑡 ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑡 = ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑧𝐿 ) ) ∧ 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ) ) |
65 |
54 62 64
|
3bitr3ri |
⊢ ( ∃ 𝑡 ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑡 = ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑧𝐿 ) ) ∧ 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ) ↔ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑧𝐿 ) ) ) ) |
66 |
53 65
|
bitri |
⊢ ( ∃ 𝑡 ∈ { 𝑏 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑏 = ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑧𝐿 ) ) } 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ↔ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑧𝐿 ) ) ) ) |
67 |
|
eqeq1 |
⊢ ( 𝑏 = 𝑡 → ( 𝑏 = ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑧𝑅 ) ) ↔ 𝑡 = ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑧𝑅 ) ) ) ) |
68 |
67
|
2rexbidv |
⊢ ( 𝑏 = 𝑡 → ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑏 = ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑧𝑅 ) ) ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑡 = ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑧𝑅 ) ) ) ) |
69 |
68
|
rexab |
⊢ ( ∃ 𝑡 ∈ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑏 = ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑧𝑅 ) ) } 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ↔ ∃ 𝑡 ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑡 = ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑧𝑅 ) ) ∧ 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ) ) |
70 |
|
rexcom4 |
⊢ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑡 ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) ( 𝑡 = ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑧𝑅 ) ) ∧ 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ) ↔ ∃ 𝑡 ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) ( 𝑡 = ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑧𝑅 ) ) ∧ 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ) ) |
71 |
|
rexcom4 |
⊢ ( ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) ∃ 𝑡 ( 𝑡 = ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑧𝑅 ) ) ∧ 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ) ↔ ∃ 𝑡 ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) ( 𝑡 = ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑧𝑅 ) ) ∧ 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ) ) |
72 |
|
ovex |
⊢ ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑧𝑅 ) ) ∈ V |
73 |
|
oveq2 |
⊢ ( 𝑡 = ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑧𝑅 ) ) → ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑧𝑅 ) ) ) ) |
74 |
73
|
eqeq2d |
⊢ ( 𝑡 = ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑧𝑅 ) ) → ( 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ↔ 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑧𝑅 ) ) ) ) ) |
75 |
72 74
|
ceqsexv |
⊢ ( ∃ 𝑡 ( 𝑡 = ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑧𝑅 ) ) ∧ 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ) ↔ 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑧𝑅 ) ) ) ) |
76 |
75
|
rexbii |
⊢ ( ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) ∃ 𝑡 ( 𝑡 = ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑧𝑅 ) ) ∧ 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ) ↔ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑧𝑅 ) ) ) ) |
77 |
71 76
|
bitr3i |
⊢ ( ∃ 𝑡 ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) ( 𝑡 = ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑧𝑅 ) ) ∧ 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ) ↔ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑧𝑅 ) ) ) ) |
78 |
77
|
rexbii |
⊢ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑡 ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) ( 𝑡 = ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑧𝑅 ) ) ∧ 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ) ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑧𝑅 ) ) ) ) |
79 |
|
r19.41vv |
⊢ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) ( 𝑡 = ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑧𝑅 ) ) ∧ 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ) ↔ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑡 = ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑧𝑅 ) ) ∧ 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ) ) |
80 |
79
|
exbii |
⊢ ( ∃ 𝑡 ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) ( 𝑡 = ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑧𝑅 ) ) ∧ 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ) ↔ ∃ 𝑡 ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑡 = ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑧𝑅 ) ) ∧ 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ) ) |
81 |
70 78 80
|
3bitr3ri |
⊢ ( ∃ 𝑡 ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑡 = ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑧𝑅 ) ) ∧ 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ) ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑧𝑅 ) ) ) ) |
82 |
69 81
|
bitri |
⊢ ( ∃ 𝑡 ∈ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑏 = ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑧𝑅 ) ) } 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑧𝑅 ) ) ) ) |
83 |
66 82
|
orbi12i |
⊢ ( ( ∃ 𝑡 ∈ { 𝑏 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑏 = ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑧𝐿 ) ) } 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ∨ ∃ 𝑡 ∈ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑏 = ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑧𝑅 ) ) } 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ) ↔ ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑧𝐿 ) ) ) ∨ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑧𝑅 ) ) ) ) ) |
84 |
50 83
|
bitr2i |
⊢ ( ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑧𝐿 ) ) ) ∨ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑧𝑅 ) ) ) ) ↔ ∃ 𝑡 ∈ ( { 𝑏 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑏 = ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑧𝐿 ) ) } ∪ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑏 = ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑧𝑅 ) ) } ) 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ) |
85 |
84
|
abbii |
⊢ { 𝑎 ∣ ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑧𝐿 ) ) ) ∨ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑧𝑅 ) ) ) ) } = { 𝑎 ∣ ∃ 𝑡 ∈ ( { 𝑏 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑏 = ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑧𝐿 ) ) } ∪ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑏 = ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑧𝑅 ) ) } ) 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) } |
86 |
49 85
|
eqtri |
⊢ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑧𝐿 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑧𝑅 ) ) ) } ) = { 𝑎 ∣ ∃ 𝑡 ∈ ( { 𝑏 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑏 = ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑧𝐿 ) ) } ∪ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑏 = ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑧𝑅 ) ) } ) 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) } |
87 |
48 86
|
uneq12i |
⊢ ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) +s ( 𝐴 ·s 𝐶 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) +s ( 𝐴 ·s 𝐶 ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑧𝐿 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑧𝑅 ) ) ) } ) ) = ( { 𝑎 ∣ ∃ 𝑡 ∈ ( { 𝑏 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑏 = ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) } ∪ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) } ) 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) } ∪ { 𝑎 ∣ ∃ 𝑡 ∈ ( { 𝑏 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑏 = ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑧𝐿 ) ) } ∪ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑏 = ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑧𝑅 ) ) } ) 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) } ) |
88 |
|
unab |
⊢ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) +s ( 𝐴 ·s 𝐶 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) +s ( 𝐴 ·s 𝐶 ) ) } ) = { 𝑎 ∣ ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) +s ( 𝐴 ·s 𝐶 ) ) ∨ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) +s ( 𝐴 ·s 𝐶 ) ) ) } |
89 |
|
rexun |
⊢ ( ∃ 𝑡 ∈ ( { 𝑏 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) } ∪ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑏 = ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) } ) 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ↔ ( ∃ 𝑡 ∈ { 𝑏 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) } 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ∨ ∃ 𝑡 ∈ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑏 = ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) } 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ) ) |
90 |
|
eqeq1 |
⊢ ( 𝑏 = 𝑡 → ( 𝑏 = ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) ↔ 𝑡 = ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) ) ) |
91 |
90
|
2rexbidv |
⊢ ( 𝑏 = 𝑡 → ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) ↔ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑡 = ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) ) ) |
92 |
91
|
rexab |
⊢ ( ∃ 𝑡 ∈ { 𝑏 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) } 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ↔ ∃ 𝑡 ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑡 = ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) ∧ 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ) ) |
93 |
|
rexcom4 |
⊢ ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑡 ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) ( 𝑡 = ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) ∧ 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ) ↔ ∃ 𝑡 ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) ( 𝑡 = ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) ∧ 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ) ) |
94 |
|
rexcom4 |
⊢ ( ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) ∃ 𝑡 ( 𝑡 = ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) ∧ 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ) ↔ ∃ 𝑡 ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) ( 𝑡 = ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) ∧ 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ) ) |
95 |
|
ovex |
⊢ ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) ∈ V |
96 |
|
oveq1 |
⊢ ( 𝑡 = ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) → ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) = ( ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) +s ( 𝐴 ·s 𝐶 ) ) ) |
97 |
96
|
eqeq2d |
⊢ ( 𝑡 = ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) → ( 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ↔ 𝑎 = ( ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) +s ( 𝐴 ·s 𝐶 ) ) ) ) |
98 |
95 97
|
ceqsexv |
⊢ ( ∃ 𝑡 ( 𝑡 = ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) ∧ 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ) ↔ 𝑎 = ( ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) +s ( 𝐴 ·s 𝐶 ) ) ) |
99 |
98
|
rexbii |
⊢ ( ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) ∃ 𝑡 ( 𝑡 = ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) ∧ 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ) ↔ ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) +s ( 𝐴 ·s 𝐶 ) ) ) |
100 |
94 99
|
bitr3i |
⊢ ( ∃ 𝑡 ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) ( 𝑡 = ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) ∧ 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ) ↔ ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) +s ( 𝐴 ·s 𝐶 ) ) ) |
101 |
100
|
rexbii |
⊢ ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑡 ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) ( 𝑡 = ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) ∧ 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ) ↔ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) +s ( 𝐴 ·s 𝐶 ) ) ) |
102 |
|
r19.41vv |
⊢ ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) ( 𝑡 = ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) ∧ 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ) ↔ ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑡 = ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) ∧ 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ) ) |
103 |
102
|
exbii |
⊢ ( ∃ 𝑡 ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) ( 𝑡 = ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) ∧ 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ) ↔ ∃ 𝑡 ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑡 = ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) ∧ 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ) ) |
104 |
93 101 103
|
3bitr3ri |
⊢ ( ∃ 𝑡 ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑡 = ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) ∧ 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ) ↔ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) +s ( 𝐴 ·s 𝐶 ) ) ) |
105 |
92 104
|
bitri |
⊢ ( ∃ 𝑡 ∈ { 𝑏 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) } 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ↔ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) +s ( 𝐴 ·s 𝐶 ) ) ) |
106 |
|
eqeq1 |
⊢ ( 𝑏 = 𝑡 → ( 𝑏 = ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) ↔ 𝑡 = ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) ) ) |
107 |
106
|
2rexbidv |
⊢ ( 𝑏 = 𝑡 → ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑏 = ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑡 = ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) ) ) |
108 |
107
|
rexab |
⊢ ( ∃ 𝑡 ∈ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑏 = ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) } 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ↔ ∃ 𝑡 ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑡 = ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) ∧ 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ) ) |
109 |
|
rexcom4 |
⊢ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑡 ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) ( 𝑡 = ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) ∧ 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ) ↔ ∃ 𝑡 ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) ( 𝑡 = ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) ∧ 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ) ) |
110 |
|
rexcom4 |
⊢ ( ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) ∃ 𝑡 ( 𝑡 = ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) ∧ 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ) ↔ ∃ 𝑡 ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) ( 𝑡 = ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) ∧ 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ) ) |
111 |
|
ovex |
⊢ ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) ∈ V |
112 |
|
oveq1 |
⊢ ( 𝑡 = ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) → ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) = ( ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) +s ( 𝐴 ·s 𝐶 ) ) ) |
113 |
112
|
eqeq2d |
⊢ ( 𝑡 = ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) → ( 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ↔ 𝑎 = ( ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) +s ( 𝐴 ·s 𝐶 ) ) ) ) |
114 |
111 113
|
ceqsexv |
⊢ ( ∃ 𝑡 ( 𝑡 = ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) ∧ 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ) ↔ 𝑎 = ( ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) +s ( 𝐴 ·s 𝐶 ) ) ) |
115 |
114
|
rexbii |
⊢ ( ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) ∃ 𝑡 ( 𝑡 = ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) ∧ 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ) ↔ ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) +s ( 𝐴 ·s 𝐶 ) ) ) |
116 |
110 115
|
bitr3i |
⊢ ( ∃ 𝑡 ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) ( 𝑡 = ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) ∧ 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ) ↔ ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) +s ( 𝐴 ·s 𝐶 ) ) ) |
117 |
116
|
rexbii |
⊢ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑡 ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) ( 𝑡 = ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) ∧ 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ) ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) +s ( 𝐴 ·s 𝐶 ) ) ) |
118 |
|
r19.41vv |
⊢ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) ( 𝑡 = ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) ∧ 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ) ↔ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑡 = ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) ∧ 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ) ) |
119 |
118
|
exbii |
⊢ ( ∃ 𝑡 ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) ( 𝑡 = ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) ∧ 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ) ↔ ∃ 𝑡 ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑡 = ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) ∧ 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ) ) |
120 |
109 117 119
|
3bitr3ri |
⊢ ( ∃ 𝑡 ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑡 = ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) ∧ 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ) ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) +s ( 𝐴 ·s 𝐶 ) ) ) |
121 |
108 120
|
bitri |
⊢ ( ∃ 𝑡 ∈ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑏 = ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) } 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) +s ( 𝐴 ·s 𝐶 ) ) ) |
122 |
105 121
|
orbi12i |
⊢ ( ( ∃ 𝑡 ∈ { 𝑏 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) } 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ∨ ∃ 𝑡 ∈ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑏 = ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) } 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ) ↔ ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) +s ( 𝐴 ·s 𝐶 ) ) ∨ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) +s ( 𝐴 ·s 𝐶 ) ) ) ) |
123 |
89 122
|
bitr2i |
⊢ ( ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) +s ( 𝐴 ·s 𝐶 ) ) ∨ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) +s ( 𝐴 ·s 𝐶 ) ) ) ↔ ∃ 𝑡 ∈ ( { 𝑏 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) } ∪ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑏 = ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) } ) 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) ) |
124 |
123
|
abbii |
⊢ { 𝑎 ∣ ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) +s ( 𝐴 ·s 𝐶 ) ) ∨ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) +s ( 𝐴 ·s 𝐶 ) ) ) } = { 𝑎 ∣ ∃ 𝑡 ∈ ( { 𝑏 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) } ∪ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑏 = ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) } ) 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) } |
125 |
88 124
|
eqtri |
⊢ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) +s ( 𝐴 ·s 𝐶 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) +s ( 𝐴 ·s 𝐶 ) ) } ) = { 𝑎 ∣ ∃ 𝑡 ∈ ( { 𝑏 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) } ∪ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑏 = ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) } ) 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) } |
126 |
|
unab |
⊢ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑧𝑅 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑧𝐿 ) ) ) } ) = { 𝑎 ∣ ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑧𝑅 ) ) ) ∨ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑧𝐿 ) ) ) ) } |
127 |
|
rexun |
⊢ ( ∃ 𝑡 ∈ ( { 𝑏 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑏 = ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑧𝑅 ) ) } ∪ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑏 = ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑧𝐿 ) ) } ) 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ↔ ( ∃ 𝑡 ∈ { 𝑏 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑏 = ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑧𝑅 ) ) } 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ∨ ∃ 𝑡 ∈ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑏 = ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑧𝐿 ) ) } 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ) ) |
128 |
|
eqeq1 |
⊢ ( 𝑏 = 𝑡 → ( 𝑏 = ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑧𝑅 ) ) ↔ 𝑡 = ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑧𝑅 ) ) ) ) |
129 |
128
|
2rexbidv |
⊢ ( 𝑏 = 𝑡 → ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑏 = ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑧𝑅 ) ) ↔ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑡 = ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑧𝑅 ) ) ) ) |
130 |
129
|
rexab |
⊢ ( ∃ 𝑡 ∈ { 𝑏 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑏 = ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑧𝑅 ) ) } 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ↔ ∃ 𝑡 ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑡 = ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑧𝑅 ) ) ∧ 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ) ) |
131 |
|
rexcom4 |
⊢ ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑡 ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) ( 𝑡 = ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑧𝑅 ) ) ∧ 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ) ↔ ∃ 𝑡 ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) ( 𝑡 = ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑧𝑅 ) ) ∧ 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ) ) |
132 |
|
rexcom4 |
⊢ ( ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) ∃ 𝑡 ( 𝑡 = ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑧𝑅 ) ) ∧ 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ) ↔ ∃ 𝑡 ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) ( 𝑡 = ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑧𝑅 ) ) ∧ 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ) ) |
133 |
|
ovex |
⊢ ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑧𝑅 ) ) ∈ V |
134 |
|
oveq2 |
⊢ ( 𝑡 = ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑧𝑅 ) ) → ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑧𝑅 ) ) ) ) |
135 |
134
|
eqeq2d |
⊢ ( 𝑡 = ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑧𝑅 ) ) → ( 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ↔ 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑧𝑅 ) ) ) ) ) |
136 |
133 135
|
ceqsexv |
⊢ ( ∃ 𝑡 ( 𝑡 = ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑧𝑅 ) ) ∧ 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ) ↔ 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑧𝑅 ) ) ) ) |
137 |
136
|
rexbii |
⊢ ( ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) ∃ 𝑡 ( 𝑡 = ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑧𝑅 ) ) ∧ 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ) ↔ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑧𝑅 ) ) ) ) |
138 |
132 137
|
bitr3i |
⊢ ( ∃ 𝑡 ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) ( 𝑡 = ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑧𝑅 ) ) ∧ 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ) ↔ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑧𝑅 ) ) ) ) |
139 |
138
|
rexbii |
⊢ ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑡 ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) ( 𝑡 = ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑧𝑅 ) ) ∧ 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ) ↔ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑧𝑅 ) ) ) ) |
140 |
|
r19.41vv |
⊢ ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) ( 𝑡 = ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑧𝑅 ) ) ∧ 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ) ↔ ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑡 = ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑧𝑅 ) ) ∧ 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ) ) |
141 |
140
|
exbii |
⊢ ( ∃ 𝑡 ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) ( 𝑡 = ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑧𝑅 ) ) ∧ 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ) ↔ ∃ 𝑡 ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑡 = ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑧𝑅 ) ) ∧ 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ) ) |
142 |
131 139 141
|
3bitr3ri |
⊢ ( ∃ 𝑡 ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑡 = ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑧𝑅 ) ) ∧ 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ) ↔ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑧𝑅 ) ) ) ) |
143 |
130 142
|
bitri |
⊢ ( ∃ 𝑡 ∈ { 𝑏 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑏 = ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑧𝑅 ) ) } 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ↔ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑧𝑅 ) ) ) ) |
144 |
|
eqeq1 |
⊢ ( 𝑏 = 𝑡 → ( 𝑏 = ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑧𝐿 ) ) ↔ 𝑡 = ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑧𝐿 ) ) ) ) |
145 |
144
|
2rexbidv |
⊢ ( 𝑏 = 𝑡 → ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑏 = ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑧𝐿 ) ) ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑡 = ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑧𝐿 ) ) ) ) |
146 |
145
|
rexab |
⊢ ( ∃ 𝑡 ∈ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑏 = ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑧𝐿 ) ) } 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ↔ ∃ 𝑡 ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑡 = ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑧𝐿 ) ) ∧ 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ) ) |
147 |
|
rexcom4 |
⊢ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑡 ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) ( 𝑡 = ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑧𝐿 ) ) ∧ 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ) ↔ ∃ 𝑡 ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) ( 𝑡 = ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑧𝐿 ) ) ∧ 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ) ) |
148 |
|
rexcom4 |
⊢ ( ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) ∃ 𝑡 ( 𝑡 = ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑧𝐿 ) ) ∧ 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ) ↔ ∃ 𝑡 ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) ( 𝑡 = ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑧𝐿 ) ) ∧ 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ) ) |
149 |
|
ovex |
⊢ ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑧𝐿 ) ) ∈ V |
150 |
|
oveq2 |
⊢ ( 𝑡 = ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑧𝐿 ) ) → ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑧𝐿 ) ) ) ) |
151 |
150
|
eqeq2d |
⊢ ( 𝑡 = ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑧𝐿 ) ) → ( 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ↔ 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑧𝐿 ) ) ) ) ) |
152 |
149 151
|
ceqsexv |
⊢ ( ∃ 𝑡 ( 𝑡 = ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑧𝐿 ) ) ∧ 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ) ↔ 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑧𝐿 ) ) ) ) |
153 |
152
|
rexbii |
⊢ ( ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) ∃ 𝑡 ( 𝑡 = ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑧𝐿 ) ) ∧ 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ) ↔ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑧𝐿 ) ) ) ) |
154 |
148 153
|
bitr3i |
⊢ ( ∃ 𝑡 ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) ( 𝑡 = ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑧𝐿 ) ) ∧ 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ) ↔ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑧𝐿 ) ) ) ) |
155 |
154
|
rexbii |
⊢ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑡 ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) ( 𝑡 = ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑧𝐿 ) ) ∧ 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ) ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑧𝐿 ) ) ) ) |
156 |
|
r19.41vv |
⊢ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) ( 𝑡 = ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑧𝐿 ) ) ∧ 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ) ↔ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑡 = ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑧𝐿 ) ) ∧ 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ) ) |
157 |
156
|
exbii |
⊢ ( ∃ 𝑡 ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) ( 𝑡 = ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑧𝐿 ) ) ∧ 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ) ↔ ∃ 𝑡 ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑡 = ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑧𝐿 ) ) ∧ 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ) ) |
158 |
147 155 157
|
3bitr3ri |
⊢ ( ∃ 𝑡 ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑡 = ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑧𝐿 ) ) ∧ 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ) ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑧𝐿 ) ) ) ) |
159 |
146 158
|
bitri |
⊢ ( ∃ 𝑡 ∈ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑏 = ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑧𝐿 ) ) } 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑧𝐿 ) ) ) ) |
160 |
143 159
|
orbi12i |
⊢ ( ( ∃ 𝑡 ∈ { 𝑏 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑏 = ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑧𝑅 ) ) } 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ∨ ∃ 𝑡 ∈ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑏 = ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑧𝐿 ) ) } 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ) ↔ ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑧𝑅 ) ) ) ∨ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑧𝐿 ) ) ) ) ) |
161 |
127 160
|
bitr2i |
⊢ ( ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑧𝑅 ) ) ) ∨ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑧𝐿 ) ) ) ) ↔ ∃ 𝑡 ∈ ( { 𝑏 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑏 = ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑧𝑅 ) ) } ∪ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑏 = ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑧𝐿 ) ) } ) 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) ) |
162 |
161
|
abbii |
⊢ { 𝑎 ∣ ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑧𝑅 ) ) ) ∨ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑧𝐿 ) ) ) ) } = { 𝑎 ∣ ∃ 𝑡 ∈ ( { 𝑏 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑏 = ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑧𝑅 ) ) } ∪ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑏 = ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑧𝐿 ) ) } ) 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) } |
163 |
126 162
|
eqtri |
⊢ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑧𝑅 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑧𝐿 ) ) ) } ) = { 𝑎 ∣ ∃ 𝑡 ∈ ( { 𝑏 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑏 = ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑧𝑅 ) ) } ∪ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑏 = ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑧𝐿 ) ) } ) 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) } |
164 |
125 163
|
uneq12i |
⊢ ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) +s ( 𝐴 ·s 𝐶 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) +s ( 𝐴 ·s 𝐶 ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑧𝑅 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑧𝐿 ) ) ) } ) ) = ( { 𝑎 ∣ ∃ 𝑡 ∈ ( { 𝑏 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) } ∪ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑏 = ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) } ) 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) } ∪ { 𝑎 ∣ ∃ 𝑡 ∈ ( { 𝑏 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑏 = ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑧𝑅 ) ) } ∪ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑏 = ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑧𝐿 ) ) } ) 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) } ) |
165 |
87 164
|
oveq12i |
⊢ ( ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) +s ( 𝐴 ·s 𝐶 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) +s ( 𝐴 ·s 𝐶 ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑧𝐿 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑧𝑅 ) ) ) } ) ) |s ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) +s ( 𝐴 ·s 𝐶 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) +s ( 𝐴 ·s 𝐶 ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑧𝑅 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑧𝐿 ) ) ) } ) ) ) = ( ( { 𝑎 ∣ ∃ 𝑡 ∈ ( { 𝑏 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑏 = ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) } ∪ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) } ) 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) } ∪ { 𝑎 ∣ ∃ 𝑡 ∈ ( { 𝑏 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑏 = ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑧𝐿 ) ) } ∪ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑏 = ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑧𝑅 ) ) } ) 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) } ) |s ( { 𝑎 ∣ ∃ 𝑡 ∈ ( { 𝑏 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) } ∪ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑏 = ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) } ) 𝑎 = ( 𝑡 +s ( 𝐴 ·s 𝐶 ) ) } ∪ { 𝑎 ∣ ∃ 𝑡 ∈ ( { 𝑏 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑏 = ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑧𝑅 ) ) } ∪ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑏 = ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑧𝐿 ) ) } ) 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s 𝑡 ) } ) ) |
166 |
10 165
|
eqtr4di |
⊢ ( 𝜑 → ( ( 𝐴 ·s 𝐵 ) +s ( 𝐴 ·s 𝐶 ) ) = ( ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) +s ( 𝐴 ·s 𝐶 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) +s ( 𝐴 ·s 𝐶 ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑧𝐿 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑧𝑅 ) ) ) } ) ) |s ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( ( 𝑥𝐿 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) +s ( 𝐴 ·s 𝐶 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( ( 𝑥𝑅 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) +s ( 𝐴 ·s 𝐶 ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑥𝐿 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑧𝑅 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑥𝑅 ·s 𝐶 ) +s ( 𝐴 ·s 𝑧𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑧𝐿 ) ) ) } ) ) ) ) |