| Step |
Hyp |
Ref |
Expression |
| 1 |
|
addsdilem3.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
| 2 |
|
addsdilem3.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
| 3 |
|
addsdilem3.3 |
⊢ ( 𝜑 → 𝐶 ∈ No ) |
| 4 |
|
addsdilem3.4 |
⊢ ( 𝜑 → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ( 𝑥𝑂 ·s ( 𝐵 +s 𝐶 ) ) = ( ( 𝑥𝑂 ·s 𝐵 ) +s ( 𝑥𝑂 ·s 𝐶 ) ) ) |
| 5 |
|
addsdilem3.5 |
⊢ ( 𝜑 → ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ( 𝐴 ·s ( 𝑦𝑂 +s 𝐶 ) ) = ( ( 𝐴 ·s 𝑦𝑂 ) +s ( 𝐴 ·s 𝐶 ) ) ) |
| 6 |
|
addsdilem3.6 |
⊢ ( 𝜑 → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝐶 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝐶 ) ) ) |
| 7 |
|
addsdilem3.7 |
⊢ ( 𝜓 → 𝑋 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ) |
| 8 |
|
addsdilem3.8 |
⊢ ( 𝜓 → 𝑌 ∈ ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ) |
| 9 |
|
oveq1 |
⊢ ( 𝑥𝑂 = 𝑋 → ( 𝑥𝑂 ·s ( 𝐵 +s 𝐶 ) ) = ( 𝑋 ·s ( 𝐵 +s 𝐶 ) ) ) |
| 10 |
|
oveq1 |
⊢ ( 𝑥𝑂 = 𝑋 → ( 𝑥𝑂 ·s 𝐵 ) = ( 𝑋 ·s 𝐵 ) ) |
| 11 |
|
oveq1 |
⊢ ( 𝑥𝑂 = 𝑋 → ( 𝑥𝑂 ·s 𝐶 ) = ( 𝑋 ·s 𝐶 ) ) |
| 12 |
10 11
|
oveq12d |
⊢ ( 𝑥𝑂 = 𝑋 → ( ( 𝑥𝑂 ·s 𝐵 ) +s ( 𝑥𝑂 ·s 𝐶 ) ) = ( ( 𝑋 ·s 𝐵 ) +s ( 𝑋 ·s 𝐶 ) ) ) |
| 13 |
9 12
|
eqeq12d |
⊢ ( 𝑥𝑂 = 𝑋 → ( ( 𝑥𝑂 ·s ( 𝐵 +s 𝐶 ) ) = ( ( 𝑥𝑂 ·s 𝐵 ) +s ( 𝑥𝑂 ·s 𝐶 ) ) ↔ ( 𝑋 ·s ( 𝐵 +s 𝐶 ) ) = ( ( 𝑋 ·s 𝐵 ) +s ( 𝑋 ·s 𝐶 ) ) ) ) |
| 14 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ( 𝑥𝑂 ·s ( 𝐵 +s 𝐶 ) ) = ( ( 𝑥𝑂 ·s 𝐵 ) +s ( 𝑥𝑂 ·s 𝐶 ) ) ) |
| 15 |
7
|
adantl |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑋 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ) |
| 16 |
13 14 15
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑋 ·s ( 𝐵 +s 𝐶 ) ) = ( ( 𝑋 ·s 𝐵 ) +s ( 𝑋 ·s 𝐶 ) ) ) |
| 17 |
|
oveq1 |
⊢ ( 𝑦𝑂 = 𝑌 → ( 𝑦𝑂 +s 𝐶 ) = ( 𝑌 +s 𝐶 ) ) |
| 18 |
17
|
oveq2d |
⊢ ( 𝑦𝑂 = 𝑌 → ( 𝐴 ·s ( 𝑦𝑂 +s 𝐶 ) ) = ( 𝐴 ·s ( 𝑌 +s 𝐶 ) ) ) |
| 19 |
|
oveq2 |
⊢ ( 𝑦𝑂 = 𝑌 → ( 𝐴 ·s 𝑦𝑂 ) = ( 𝐴 ·s 𝑌 ) ) |
| 20 |
19
|
oveq1d |
⊢ ( 𝑦𝑂 = 𝑌 → ( ( 𝐴 ·s 𝑦𝑂 ) +s ( 𝐴 ·s 𝐶 ) ) = ( ( 𝐴 ·s 𝑌 ) +s ( 𝐴 ·s 𝐶 ) ) ) |
| 21 |
18 20
|
eqeq12d |
⊢ ( 𝑦𝑂 = 𝑌 → ( ( 𝐴 ·s ( 𝑦𝑂 +s 𝐶 ) ) = ( ( 𝐴 ·s 𝑦𝑂 ) +s ( 𝐴 ·s 𝐶 ) ) ↔ ( 𝐴 ·s ( 𝑌 +s 𝐶 ) ) = ( ( 𝐴 ·s 𝑌 ) +s ( 𝐴 ·s 𝐶 ) ) ) ) |
| 22 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ( 𝐴 ·s ( 𝑦𝑂 +s 𝐶 ) ) = ( ( 𝐴 ·s 𝑦𝑂 ) +s ( 𝐴 ·s 𝐶 ) ) ) |
| 23 |
8
|
adantl |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑌 ∈ ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ) |
| 24 |
21 22 23
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝐴 ·s ( 𝑌 +s 𝐶 ) ) = ( ( 𝐴 ·s 𝑌 ) +s ( 𝐴 ·s 𝐶 ) ) ) |
| 25 |
16 24
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝑋 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑌 +s 𝐶 ) ) ) = ( ( ( 𝑋 ·s 𝐵 ) +s ( 𝑋 ·s 𝐶 ) ) +s ( ( 𝐴 ·s 𝑌 ) +s ( 𝐴 ·s 𝐶 ) ) ) ) |
| 26 |
|
oveq1 |
⊢ ( 𝑥𝑂 = 𝑋 → ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝐶 ) ) = ( 𝑋 ·s ( 𝑦𝑂 +s 𝐶 ) ) ) |
| 27 |
|
oveq1 |
⊢ ( 𝑥𝑂 = 𝑋 → ( 𝑥𝑂 ·s 𝑦𝑂 ) = ( 𝑋 ·s 𝑦𝑂 ) ) |
| 28 |
27 11
|
oveq12d |
⊢ ( 𝑥𝑂 = 𝑋 → ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝐶 ) ) = ( ( 𝑋 ·s 𝑦𝑂 ) +s ( 𝑋 ·s 𝐶 ) ) ) |
| 29 |
26 28
|
eqeq12d |
⊢ ( 𝑥𝑂 = 𝑋 → ( ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝐶 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝐶 ) ) ↔ ( 𝑋 ·s ( 𝑦𝑂 +s 𝐶 ) ) = ( ( 𝑋 ·s 𝑦𝑂 ) +s ( 𝑋 ·s 𝐶 ) ) ) ) |
| 30 |
17
|
oveq2d |
⊢ ( 𝑦𝑂 = 𝑌 → ( 𝑋 ·s ( 𝑦𝑂 +s 𝐶 ) ) = ( 𝑋 ·s ( 𝑌 +s 𝐶 ) ) ) |
| 31 |
|
oveq2 |
⊢ ( 𝑦𝑂 = 𝑌 → ( 𝑋 ·s 𝑦𝑂 ) = ( 𝑋 ·s 𝑌 ) ) |
| 32 |
31
|
oveq1d |
⊢ ( 𝑦𝑂 = 𝑌 → ( ( 𝑋 ·s 𝑦𝑂 ) +s ( 𝑋 ·s 𝐶 ) ) = ( ( 𝑋 ·s 𝑌 ) +s ( 𝑋 ·s 𝐶 ) ) ) |
| 33 |
30 32
|
eqeq12d |
⊢ ( 𝑦𝑂 = 𝑌 → ( ( 𝑋 ·s ( 𝑦𝑂 +s 𝐶 ) ) = ( ( 𝑋 ·s 𝑦𝑂 ) +s ( 𝑋 ·s 𝐶 ) ) ↔ ( 𝑋 ·s ( 𝑌 +s 𝐶 ) ) = ( ( 𝑋 ·s 𝑌 ) +s ( 𝑋 ·s 𝐶 ) ) ) ) |
| 34 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ( 𝑥𝑂 ·s ( 𝑦𝑂 +s 𝐶 ) ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) +s ( 𝑥𝑂 ·s 𝐶 ) ) ) |
| 35 |
29 33 34 15 23
|
rspc2dv |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑋 ·s ( 𝑌 +s 𝐶 ) ) = ( ( 𝑋 ·s 𝑌 ) +s ( 𝑋 ·s 𝐶 ) ) ) |
| 36 |
25 35
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( 𝑋 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑌 +s 𝐶 ) ) ) -s ( 𝑋 ·s ( 𝑌 +s 𝐶 ) ) ) = ( ( ( ( 𝑋 ·s 𝐵 ) +s ( 𝑋 ·s 𝐶 ) ) +s ( ( 𝐴 ·s 𝑌 ) +s ( 𝐴 ·s 𝐶 ) ) ) -s ( ( 𝑋 ·s 𝑌 ) +s ( 𝑋 ·s 𝐶 ) ) ) ) |
| 37 |
|
leftssno |
⊢ ( L ‘ 𝐴 ) ⊆ No |
| 38 |
|
rightssno |
⊢ ( R ‘ 𝐴 ) ⊆ No |
| 39 |
37 38
|
unssi |
⊢ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ⊆ No |
| 40 |
39 7
|
sselid |
⊢ ( 𝜓 → 𝑋 ∈ No ) |
| 41 |
40
|
adantl |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑋 ∈ No ) |
| 42 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐵 ∈ No ) |
| 43 |
41 42
|
mulscld |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑋 ·s 𝐵 ) ∈ No ) |
| 44 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐶 ∈ No ) |
| 45 |
41 44
|
mulscld |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑋 ·s 𝐶 ) ∈ No ) |
| 46 |
|
pncans |
⊢ ( ( ( 𝑋 ·s 𝐵 ) ∈ No ∧ ( 𝑋 ·s 𝐶 ) ∈ No ) → ( ( ( 𝑋 ·s 𝐵 ) +s ( 𝑋 ·s 𝐶 ) ) -s ( 𝑋 ·s 𝐶 ) ) = ( 𝑋 ·s 𝐵 ) ) |
| 47 |
43 45 46
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( 𝑋 ·s 𝐵 ) +s ( 𝑋 ·s 𝐶 ) ) -s ( 𝑋 ·s 𝐶 ) ) = ( 𝑋 ·s 𝐵 ) ) |
| 48 |
47
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( ( 𝑋 ·s 𝐵 ) +s ( 𝑋 ·s 𝐶 ) ) -s ( 𝑋 ·s 𝐶 ) ) +s ( ( 𝐴 ·s 𝑌 ) +s ( 𝐴 ·s 𝐶 ) ) ) = ( ( 𝑋 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑌 ) +s ( 𝐴 ·s 𝐶 ) ) ) ) |
| 49 |
43 45
|
addscld |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝑋 ·s 𝐵 ) +s ( 𝑋 ·s 𝐶 ) ) ∈ No ) |
| 50 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐴 ∈ No ) |
| 51 |
|
leftssno |
⊢ ( L ‘ 𝐵 ) ⊆ No |
| 52 |
|
rightssno |
⊢ ( R ‘ 𝐵 ) ⊆ No |
| 53 |
51 52
|
unssi |
⊢ ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ⊆ No |
| 54 |
53 8
|
sselid |
⊢ ( 𝜓 → 𝑌 ∈ No ) |
| 55 |
54
|
adantl |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑌 ∈ No ) |
| 56 |
50 55
|
mulscld |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝐴 ·s 𝑌 ) ∈ No ) |
| 57 |
1 3
|
mulscld |
⊢ ( 𝜑 → ( 𝐴 ·s 𝐶 ) ∈ No ) |
| 58 |
57
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝐴 ·s 𝐶 ) ∈ No ) |
| 59 |
56 58
|
addscld |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝐴 ·s 𝑌 ) +s ( 𝐴 ·s 𝐶 ) ) ∈ No ) |
| 60 |
49 59 45
|
addsubsd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( ( 𝑋 ·s 𝐵 ) +s ( 𝑋 ·s 𝐶 ) ) +s ( ( 𝐴 ·s 𝑌 ) +s ( 𝐴 ·s 𝐶 ) ) ) -s ( 𝑋 ·s 𝐶 ) ) = ( ( ( ( 𝑋 ·s 𝐵 ) +s ( 𝑋 ·s 𝐶 ) ) -s ( 𝑋 ·s 𝐶 ) ) +s ( ( 𝐴 ·s 𝑌 ) +s ( 𝐴 ·s 𝐶 ) ) ) ) |
| 61 |
43 56 58
|
addsassd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( 𝑋 ·s 𝐵 ) +s ( 𝐴 ·s 𝑌 ) ) +s ( 𝐴 ·s 𝐶 ) ) = ( ( 𝑋 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑌 ) +s ( 𝐴 ·s 𝐶 ) ) ) ) |
| 62 |
48 60 61
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( ( 𝑋 ·s 𝐵 ) +s ( 𝑋 ·s 𝐶 ) ) +s ( ( 𝐴 ·s 𝑌 ) +s ( 𝐴 ·s 𝐶 ) ) ) -s ( 𝑋 ·s 𝐶 ) ) = ( ( ( 𝑋 ·s 𝐵 ) +s ( 𝐴 ·s 𝑌 ) ) +s ( 𝐴 ·s 𝐶 ) ) ) |
| 63 |
62
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( ( ( 𝑋 ·s 𝐵 ) +s ( 𝑋 ·s 𝐶 ) ) +s ( ( 𝐴 ·s 𝑌 ) +s ( 𝐴 ·s 𝐶 ) ) ) -s ( 𝑋 ·s 𝐶 ) ) -s ( 𝑋 ·s 𝑌 ) ) = ( ( ( ( 𝑋 ·s 𝐵 ) +s ( 𝐴 ·s 𝑌 ) ) +s ( 𝐴 ·s 𝐶 ) ) -s ( 𝑋 ·s 𝑌 ) ) ) |
| 64 |
49 59
|
addscld |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( 𝑋 ·s 𝐵 ) +s ( 𝑋 ·s 𝐶 ) ) +s ( ( 𝐴 ·s 𝑌 ) +s ( 𝐴 ·s 𝐶 ) ) ) ∈ No ) |
| 65 |
40 54
|
mulscld |
⊢ ( 𝜓 → ( 𝑋 ·s 𝑌 ) ∈ No ) |
| 66 |
65
|
adantl |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑋 ·s 𝑌 ) ∈ No ) |
| 67 |
64 45 66
|
subsubs4d |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( ( ( 𝑋 ·s 𝐵 ) +s ( 𝑋 ·s 𝐶 ) ) +s ( ( 𝐴 ·s 𝑌 ) +s ( 𝐴 ·s 𝐶 ) ) ) -s ( 𝑋 ·s 𝐶 ) ) -s ( 𝑋 ·s 𝑌 ) ) = ( ( ( ( 𝑋 ·s 𝐵 ) +s ( 𝑋 ·s 𝐶 ) ) +s ( ( 𝐴 ·s 𝑌 ) +s ( 𝐴 ·s 𝐶 ) ) ) -s ( ( 𝑋 ·s 𝐶 ) +s ( 𝑋 ·s 𝑌 ) ) ) ) |
| 68 |
45 66
|
addscomd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝑋 ·s 𝐶 ) +s ( 𝑋 ·s 𝑌 ) ) = ( ( 𝑋 ·s 𝑌 ) +s ( 𝑋 ·s 𝐶 ) ) ) |
| 69 |
68
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( ( 𝑋 ·s 𝐵 ) +s ( 𝑋 ·s 𝐶 ) ) +s ( ( 𝐴 ·s 𝑌 ) +s ( 𝐴 ·s 𝐶 ) ) ) -s ( ( 𝑋 ·s 𝐶 ) +s ( 𝑋 ·s 𝑌 ) ) ) = ( ( ( ( 𝑋 ·s 𝐵 ) +s ( 𝑋 ·s 𝐶 ) ) +s ( ( 𝐴 ·s 𝑌 ) +s ( 𝐴 ·s 𝐶 ) ) ) -s ( ( 𝑋 ·s 𝑌 ) +s ( 𝑋 ·s 𝐶 ) ) ) ) |
| 70 |
67 69
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( ( ( 𝑋 ·s 𝐵 ) +s ( 𝑋 ·s 𝐶 ) ) +s ( ( 𝐴 ·s 𝑌 ) +s ( 𝐴 ·s 𝐶 ) ) ) -s ( 𝑋 ·s 𝐶 ) ) -s ( 𝑋 ·s 𝑌 ) ) = ( ( ( ( 𝑋 ·s 𝐵 ) +s ( 𝑋 ·s 𝐶 ) ) +s ( ( 𝐴 ·s 𝑌 ) +s ( 𝐴 ·s 𝐶 ) ) ) -s ( ( 𝑋 ·s 𝑌 ) +s ( 𝑋 ·s 𝐶 ) ) ) ) |
| 71 |
43 56
|
addscld |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝑋 ·s 𝐵 ) +s ( 𝐴 ·s 𝑌 ) ) ∈ No ) |
| 72 |
71 58 66
|
addsubsd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( ( 𝑋 ·s 𝐵 ) +s ( 𝐴 ·s 𝑌 ) ) +s ( 𝐴 ·s 𝐶 ) ) -s ( 𝑋 ·s 𝑌 ) ) = ( ( ( ( 𝑋 ·s 𝐵 ) +s ( 𝐴 ·s 𝑌 ) ) -s ( 𝑋 ·s 𝑌 ) ) +s ( 𝐴 ·s 𝐶 ) ) ) |
| 73 |
63 70 72
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( ( 𝑋 ·s 𝐵 ) +s ( 𝑋 ·s 𝐶 ) ) +s ( ( 𝐴 ·s 𝑌 ) +s ( 𝐴 ·s 𝐶 ) ) ) -s ( ( 𝑋 ·s 𝑌 ) +s ( 𝑋 ·s 𝐶 ) ) ) = ( ( ( ( 𝑋 ·s 𝐵 ) +s ( 𝐴 ·s 𝑌 ) ) -s ( 𝑋 ·s 𝑌 ) ) +s ( 𝐴 ·s 𝐶 ) ) ) |
| 74 |
36 73
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( 𝑋 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑌 +s 𝐶 ) ) ) -s ( 𝑋 ·s ( 𝑌 +s 𝐶 ) ) ) = ( ( ( ( 𝑋 ·s 𝐵 ) +s ( 𝐴 ·s 𝑌 ) ) -s ( 𝑋 ·s 𝑌 ) ) +s ( 𝐴 ·s 𝐶 ) ) ) |