| Step |
Hyp |
Ref |
Expression |
| 1 |
|
addsdilem4.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
| 2 |
|
addsdilem4.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
| 3 |
|
addsdilem4.3 |
⊢ ( 𝜑 → 𝐶 ∈ No ) |
| 4 |
|
addsdilem4.4 |
⊢ ( 𝜑 → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ( 𝑥𝑂 ·s ( 𝐵 +s 𝐶 ) ) = ( ( 𝑥𝑂 ·s 𝐵 ) +s ( 𝑥𝑂 ·s 𝐶 ) ) ) |
| 5 |
|
addsdilem4.5 |
⊢ ( 𝜑 → ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝐶 ) ∪ ( R ‘ 𝐶 ) ) ( 𝐴 ·s ( 𝐵 +s 𝑧𝑂 ) ) = ( ( 𝐴 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧𝑂 ) ) ) |
| 6 |
|
addsdilem4.6 |
⊢ ( 𝜑 → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝐶 ) ∪ ( R ‘ 𝐶 ) ) ( 𝑥𝑂 ·s ( 𝐵 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝐵 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ) |
| 7 |
|
addsdilem4.7 |
⊢ ( 𝜓 → 𝑋 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ) |
| 8 |
|
addsdilem4.8 |
⊢ ( 𝜓 → 𝑍 ∈ ( ( L ‘ 𝐶 ) ∪ ( R ‘ 𝐶 ) ) ) |
| 9 |
|
oveq1 |
⊢ ( 𝑥𝑂 = 𝑋 → ( 𝑥𝑂 ·s ( 𝐵 +s 𝐶 ) ) = ( 𝑋 ·s ( 𝐵 +s 𝐶 ) ) ) |
| 10 |
|
oveq1 |
⊢ ( 𝑥𝑂 = 𝑋 → ( 𝑥𝑂 ·s 𝐵 ) = ( 𝑋 ·s 𝐵 ) ) |
| 11 |
|
oveq1 |
⊢ ( 𝑥𝑂 = 𝑋 → ( 𝑥𝑂 ·s 𝐶 ) = ( 𝑋 ·s 𝐶 ) ) |
| 12 |
10 11
|
oveq12d |
⊢ ( 𝑥𝑂 = 𝑋 → ( ( 𝑥𝑂 ·s 𝐵 ) +s ( 𝑥𝑂 ·s 𝐶 ) ) = ( ( 𝑋 ·s 𝐵 ) +s ( 𝑋 ·s 𝐶 ) ) ) |
| 13 |
9 12
|
eqeq12d |
⊢ ( 𝑥𝑂 = 𝑋 → ( ( 𝑥𝑂 ·s ( 𝐵 +s 𝐶 ) ) = ( ( 𝑥𝑂 ·s 𝐵 ) +s ( 𝑥𝑂 ·s 𝐶 ) ) ↔ ( 𝑋 ·s ( 𝐵 +s 𝐶 ) ) = ( ( 𝑋 ·s 𝐵 ) +s ( 𝑋 ·s 𝐶 ) ) ) ) |
| 14 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ( 𝑥𝑂 ·s ( 𝐵 +s 𝐶 ) ) = ( ( 𝑥𝑂 ·s 𝐵 ) +s ( 𝑥𝑂 ·s 𝐶 ) ) ) |
| 15 |
7
|
adantl |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑋 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ) |
| 16 |
13 14 15
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑋 ·s ( 𝐵 +s 𝐶 ) ) = ( ( 𝑋 ·s 𝐵 ) +s ( 𝑋 ·s 𝐶 ) ) ) |
| 17 |
|
oveq2 |
⊢ ( 𝑧𝑂 = 𝑍 → ( 𝐵 +s 𝑧𝑂 ) = ( 𝐵 +s 𝑍 ) ) |
| 18 |
17
|
oveq2d |
⊢ ( 𝑧𝑂 = 𝑍 → ( 𝐴 ·s ( 𝐵 +s 𝑧𝑂 ) ) = ( 𝐴 ·s ( 𝐵 +s 𝑍 ) ) ) |
| 19 |
|
oveq2 |
⊢ ( 𝑧𝑂 = 𝑍 → ( 𝐴 ·s 𝑧𝑂 ) = ( 𝐴 ·s 𝑍 ) ) |
| 20 |
19
|
oveq2d |
⊢ ( 𝑧𝑂 = 𝑍 → ( ( 𝐴 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧𝑂 ) ) = ( ( 𝐴 ·s 𝐵 ) +s ( 𝐴 ·s 𝑍 ) ) ) |
| 21 |
18 20
|
eqeq12d |
⊢ ( 𝑧𝑂 = 𝑍 → ( ( 𝐴 ·s ( 𝐵 +s 𝑧𝑂 ) ) = ( ( 𝐴 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧𝑂 ) ) ↔ ( 𝐴 ·s ( 𝐵 +s 𝑍 ) ) = ( ( 𝐴 ·s 𝐵 ) +s ( 𝐴 ·s 𝑍 ) ) ) ) |
| 22 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝐶 ) ∪ ( R ‘ 𝐶 ) ) ( 𝐴 ·s ( 𝐵 +s 𝑧𝑂 ) ) = ( ( 𝐴 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧𝑂 ) ) ) |
| 23 |
8
|
adantl |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑍 ∈ ( ( L ‘ 𝐶 ) ∪ ( R ‘ 𝐶 ) ) ) |
| 24 |
21 22 23
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝐴 ·s ( 𝐵 +s 𝑍 ) ) = ( ( 𝐴 ·s 𝐵 ) +s ( 𝐴 ·s 𝑍 ) ) ) |
| 25 |
16 24
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝑋 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑍 ) ) ) = ( ( ( 𝑋 ·s 𝐵 ) +s ( 𝑋 ·s 𝐶 ) ) +s ( ( 𝐴 ·s 𝐵 ) +s ( 𝐴 ·s 𝑍 ) ) ) ) |
| 26 |
|
oveq1 |
⊢ ( 𝑥𝑂 = 𝑋 → ( 𝑥𝑂 ·s ( 𝐵 +s 𝑧𝑂 ) ) = ( 𝑋 ·s ( 𝐵 +s 𝑧𝑂 ) ) ) |
| 27 |
|
oveq1 |
⊢ ( 𝑥𝑂 = 𝑋 → ( 𝑥𝑂 ·s 𝑧𝑂 ) = ( 𝑋 ·s 𝑧𝑂 ) ) |
| 28 |
10 27
|
oveq12d |
⊢ ( 𝑥𝑂 = 𝑋 → ( ( 𝑥𝑂 ·s 𝐵 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) = ( ( 𝑋 ·s 𝐵 ) +s ( 𝑋 ·s 𝑧𝑂 ) ) ) |
| 29 |
26 28
|
eqeq12d |
⊢ ( 𝑥𝑂 = 𝑋 → ( ( 𝑥𝑂 ·s ( 𝐵 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝐵 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ↔ ( 𝑋 ·s ( 𝐵 +s 𝑧𝑂 ) ) = ( ( 𝑋 ·s 𝐵 ) +s ( 𝑋 ·s 𝑧𝑂 ) ) ) ) |
| 30 |
17
|
oveq2d |
⊢ ( 𝑧𝑂 = 𝑍 → ( 𝑋 ·s ( 𝐵 +s 𝑧𝑂 ) ) = ( 𝑋 ·s ( 𝐵 +s 𝑍 ) ) ) |
| 31 |
|
oveq2 |
⊢ ( 𝑧𝑂 = 𝑍 → ( 𝑋 ·s 𝑧𝑂 ) = ( 𝑋 ·s 𝑍 ) ) |
| 32 |
31
|
oveq2d |
⊢ ( 𝑧𝑂 = 𝑍 → ( ( 𝑋 ·s 𝐵 ) +s ( 𝑋 ·s 𝑧𝑂 ) ) = ( ( 𝑋 ·s 𝐵 ) +s ( 𝑋 ·s 𝑍 ) ) ) |
| 33 |
30 32
|
eqeq12d |
⊢ ( 𝑧𝑂 = 𝑍 → ( ( 𝑋 ·s ( 𝐵 +s 𝑧𝑂 ) ) = ( ( 𝑋 ·s 𝐵 ) +s ( 𝑋 ·s 𝑧𝑂 ) ) ↔ ( 𝑋 ·s ( 𝐵 +s 𝑍 ) ) = ( ( 𝑋 ·s 𝐵 ) +s ( 𝑋 ·s 𝑍 ) ) ) ) |
| 34 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝐶 ) ∪ ( R ‘ 𝐶 ) ) ( 𝑥𝑂 ·s ( 𝐵 +s 𝑧𝑂 ) ) = ( ( 𝑥𝑂 ·s 𝐵 ) +s ( 𝑥𝑂 ·s 𝑧𝑂 ) ) ) |
| 35 |
29 33 34 15 23
|
rspc2dv |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑋 ·s ( 𝐵 +s 𝑍 ) ) = ( ( 𝑋 ·s 𝐵 ) +s ( 𝑋 ·s 𝑍 ) ) ) |
| 36 |
25 35
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( 𝑋 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑍 ) ) ) -s ( 𝑋 ·s ( 𝐵 +s 𝑍 ) ) ) = ( ( ( ( 𝑋 ·s 𝐵 ) +s ( 𝑋 ·s 𝐶 ) ) +s ( ( 𝐴 ·s 𝐵 ) +s ( 𝐴 ·s 𝑍 ) ) ) -s ( ( 𝑋 ·s 𝐵 ) +s ( 𝑋 ·s 𝑍 ) ) ) ) |
| 37 |
|
leftssno |
⊢ ( L ‘ 𝐴 ) ⊆ No |
| 38 |
|
rightssno |
⊢ ( R ‘ 𝐴 ) ⊆ No |
| 39 |
37 38
|
unssi |
⊢ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ⊆ No |
| 40 |
39 7
|
sselid |
⊢ ( 𝜓 → 𝑋 ∈ No ) |
| 41 |
40
|
adantl |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑋 ∈ No ) |
| 42 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐵 ∈ No ) |
| 43 |
41 42
|
mulscld |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑋 ·s 𝐵 ) ∈ No ) |
| 44 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐶 ∈ No ) |
| 45 |
41 44
|
mulscld |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑋 ·s 𝐶 ) ∈ No ) |
| 46 |
43 45
|
addscld |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝑋 ·s 𝐵 ) +s ( 𝑋 ·s 𝐶 ) ) ∈ No ) |
| 47 |
1 2
|
mulscld |
⊢ ( 𝜑 → ( 𝐴 ·s 𝐵 ) ∈ No ) |
| 48 |
47
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝐴 ·s 𝐵 ) ∈ No ) |
| 49 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐴 ∈ No ) |
| 50 |
|
leftssno |
⊢ ( L ‘ 𝐶 ) ⊆ No |
| 51 |
|
rightssno |
⊢ ( R ‘ 𝐶 ) ⊆ No |
| 52 |
50 51
|
unssi |
⊢ ( ( L ‘ 𝐶 ) ∪ ( R ‘ 𝐶 ) ) ⊆ No |
| 53 |
52 8
|
sselid |
⊢ ( 𝜓 → 𝑍 ∈ No ) |
| 54 |
53
|
adantl |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑍 ∈ No ) |
| 55 |
49 54
|
mulscld |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝐴 ·s 𝑍 ) ∈ No ) |
| 56 |
48 55
|
addscld |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝐴 ·s 𝐵 ) +s ( 𝐴 ·s 𝑍 ) ) ∈ No ) |
| 57 |
46 56
|
addscld |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( 𝑋 ·s 𝐵 ) +s ( 𝑋 ·s 𝐶 ) ) +s ( ( 𝐴 ·s 𝐵 ) +s ( 𝐴 ·s 𝑍 ) ) ) ∈ No ) |
| 58 |
41 54
|
mulscld |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑋 ·s 𝑍 ) ∈ No ) |
| 59 |
57 43 58
|
subsubs4d |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( ( ( 𝑋 ·s 𝐵 ) +s ( 𝑋 ·s 𝐶 ) ) +s ( ( 𝐴 ·s 𝐵 ) +s ( 𝐴 ·s 𝑍 ) ) ) -s ( 𝑋 ·s 𝐵 ) ) -s ( 𝑋 ·s 𝑍 ) ) = ( ( ( ( 𝑋 ·s 𝐵 ) +s ( 𝑋 ·s 𝐶 ) ) +s ( ( 𝐴 ·s 𝐵 ) +s ( 𝐴 ·s 𝑍 ) ) ) -s ( ( 𝑋 ·s 𝐵 ) +s ( 𝑋 ·s 𝑍 ) ) ) ) |
| 60 |
46 56 43
|
addsubsd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( ( 𝑋 ·s 𝐵 ) +s ( 𝑋 ·s 𝐶 ) ) +s ( ( 𝐴 ·s 𝐵 ) +s ( 𝐴 ·s 𝑍 ) ) ) -s ( 𝑋 ·s 𝐵 ) ) = ( ( ( ( 𝑋 ·s 𝐵 ) +s ( 𝑋 ·s 𝐶 ) ) -s ( 𝑋 ·s 𝐵 ) ) +s ( ( 𝐴 ·s 𝐵 ) +s ( 𝐴 ·s 𝑍 ) ) ) ) |
| 61 |
43 45
|
addscomd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝑋 ·s 𝐵 ) +s ( 𝑋 ·s 𝐶 ) ) = ( ( 𝑋 ·s 𝐶 ) +s ( 𝑋 ·s 𝐵 ) ) ) |
| 62 |
61
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( 𝑋 ·s 𝐵 ) +s ( 𝑋 ·s 𝐶 ) ) -s ( 𝑋 ·s 𝐵 ) ) = ( ( ( 𝑋 ·s 𝐶 ) +s ( 𝑋 ·s 𝐵 ) ) -s ( 𝑋 ·s 𝐵 ) ) ) |
| 63 |
|
pncans |
⊢ ( ( ( 𝑋 ·s 𝐶 ) ∈ No ∧ ( 𝑋 ·s 𝐵 ) ∈ No ) → ( ( ( 𝑋 ·s 𝐶 ) +s ( 𝑋 ·s 𝐵 ) ) -s ( 𝑋 ·s 𝐵 ) ) = ( 𝑋 ·s 𝐶 ) ) |
| 64 |
45 43 63
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( 𝑋 ·s 𝐶 ) +s ( 𝑋 ·s 𝐵 ) ) -s ( 𝑋 ·s 𝐵 ) ) = ( 𝑋 ·s 𝐶 ) ) |
| 65 |
62 64
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( 𝑋 ·s 𝐵 ) +s ( 𝑋 ·s 𝐶 ) ) -s ( 𝑋 ·s 𝐵 ) ) = ( 𝑋 ·s 𝐶 ) ) |
| 66 |
65
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( ( 𝑋 ·s 𝐵 ) +s ( 𝑋 ·s 𝐶 ) ) -s ( 𝑋 ·s 𝐵 ) ) +s ( ( 𝐴 ·s 𝐵 ) +s ( 𝐴 ·s 𝑍 ) ) ) = ( ( 𝑋 ·s 𝐶 ) +s ( ( 𝐴 ·s 𝐵 ) +s ( 𝐴 ·s 𝑍 ) ) ) ) |
| 67 |
45 48 55
|
adds12d |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝑋 ·s 𝐶 ) +s ( ( 𝐴 ·s 𝐵 ) +s ( 𝐴 ·s 𝑍 ) ) ) = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑋 ·s 𝐶 ) +s ( 𝐴 ·s 𝑍 ) ) ) ) |
| 68 |
60 66 67
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( ( 𝑋 ·s 𝐵 ) +s ( 𝑋 ·s 𝐶 ) ) +s ( ( 𝐴 ·s 𝐵 ) +s ( 𝐴 ·s 𝑍 ) ) ) -s ( 𝑋 ·s 𝐵 ) ) = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑋 ·s 𝐶 ) +s ( 𝐴 ·s 𝑍 ) ) ) ) |
| 69 |
68
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( ( ( 𝑋 ·s 𝐵 ) +s ( 𝑋 ·s 𝐶 ) ) +s ( ( 𝐴 ·s 𝐵 ) +s ( 𝐴 ·s 𝑍 ) ) ) -s ( 𝑋 ·s 𝐵 ) ) -s ( 𝑋 ·s 𝑍 ) ) = ( ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑋 ·s 𝐶 ) +s ( 𝐴 ·s 𝑍 ) ) ) -s ( 𝑋 ·s 𝑍 ) ) ) |
| 70 |
45 55
|
addscld |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝑋 ·s 𝐶 ) +s ( 𝐴 ·s 𝑍 ) ) ∈ No ) |
| 71 |
48 70 58
|
addsubsassd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑋 ·s 𝐶 ) +s ( 𝐴 ·s 𝑍 ) ) ) -s ( 𝑋 ·s 𝑍 ) ) = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑋 ·s 𝐶 ) +s ( 𝐴 ·s 𝑍 ) ) -s ( 𝑋 ·s 𝑍 ) ) ) ) |
| 72 |
69 71
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( ( ( 𝑋 ·s 𝐵 ) +s ( 𝑋 ·s 𝐶 ) ) +s ( ( 𝐴 ·s 𝐵 ) +s ( 𝐴 ·s 𝑍 ) ) ) -s ( 𝑋 ·s 𝐵 ) ) -s ( 𝑋 ·s 𝑍 ) ) = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑋 ·s 𝐶 ) +s ( 𝐴 ·s 𝑍 ) ) -s ( 𝑋 ·s 𝑍 ) ) ) ) |
| 73 |
36 59 72
|
3eqtr2d |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( 𝑋 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑍 ) ) ) -s ( 𝑋 ·s ( 𝐵 +s 𝑍 ) ) ) = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝑋 ·s 𝐶 ) +s ( 𝐴 ·s 𝑍 ) ) -s ( 𝑋 ·s 𝑍 ) ) ) ) |