Metamath Proof Explorer


Theorem addsfo

Description: Surreal addition is onto. (Contributed by Scott Fenton, 21-Jan-2025)

Ref Expression
Assertion addsfo +s : ( No × No ) –onto No

Proof

Step Hyp Ref Expression
1 addsf +s : ( No × No ) ⟶ No
2 0sno 0s No
3 opelxpi ( ( 𝑧 No ∧ 0s No ) → ⟨ 𝑧 , 0s ⟩ ∈ ( No × No ) )
4 2 3 mpan2 ( 𝑧 No → ⟨ 𝑧 , 0s ⟩ ∈ ( No × No ) )
5 addsrid ( 𝑧 No → ( 𝑧 +s 0s ) = 𝑧 )
6 5 eqcomd ( 𝑧 No 𝑧 = ( 𝑧 +s 0s ) )
7 fveq2 ( 𝑥 = ⟨ 𝑧 , 0s ⟩ → ( +s𝑥 ) = ( +s ‘ ⟨ 𝑧 , 0s ⟩ ) )
8 df-ov ( 𝑧 +s 0s ) = ( +s ‘ ⟨ 𝑧 , 0s ⟩ )
9 7 8 eqtr4di ( 𝑥 = ⟨ 𝑧 , 0s ⟩ → ( +s𝑥 ) = ( 𝑧 +s 0s ) )
10 9 rspceeqv ( ( ⟨ 𝑧 , 0s ⟩ ∈ ( No × No ) ∧ 𝑧 = ( 𝑧 +s 0s ) ) → ∃ 𝑥 ∈ ( No × No ) 𝑧 = ( +s𝑥 ) )
11 4 6 10 syl2anc ( 𝑧 No → ∃ 𝑥 ∈ ( No × No ) 𝑧 = ( +s𝑥 ) )
12 11 rgen 𝑧 No 𝑥 ∈ ( No × No ) 𝑧 = ( +s𝑥 )
13 dffo3 ( +s : ( No × No ) –onto No ↔ ( +s : ( No × No ) ⟶ No ∧ ∀ 𝑧 No 𝑥 ∈ ( No × No ) 𝑧 = ( +s𝑥 ) ) )
14 1 12 13 mpbir2an +s : ( No × No ) –onto No