Metamath Proof Explorer


Theorem addsgt0d

Description: The sum of two positive surreals is positive. (Contributed by Scott Fenton, 15-Apr-2025)

Ref Expression
Hypotheses addsgt0d.1 ( 𝜑𝐴 No )
addsgt0d.2 ( 𝜑𝐵 No )
addsgt0d.3 ( 𝜑 → 0s <s 𝐴 )
addsgt0d.4 ( 𝜑 → 0s <s 𝐵 )
Assertion addsgt0d ( 𝜑 → 0s <s ( 𝐴 +s 𝐵 ) )

Proof

Step Hyp Ref Expression
1 addsgt0d.1 ( 𝜑𝐴 No )
2 addsgt0d.2 ( 𝜑𝐵 No )
3 addsgt0d.3 ( 𝜑 → 0s <s 𝐴 )
4 addsgt0d.4 ( 𝜑 → 0s <s 𝐵 )
5 0sno 0s No
6 addsrid ( 0s No → ( 0s +s 0s ) = 0s )
7 5 6 ax-mp ( 0s +s 0s ) = 0s
8 5 a1i ( 𝜑 → 0s No )
9 8 8 1 2 3 4 slt2addd ( 𝜑 → ( 0s +s 0s ) <s ( 𝐴 +s 𝐵 ) )
10 7 9 eqbrtrrid ( 𝜑 → 0s <s ( 𝐴 +s 𝐵 ) )