Step |
Hyp |
Ref |
Expression |
1 |
|
addsproplem.1 |
⊢ ( 𝜑 → ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ∀ 𝑧 ∈ No ( ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) ) |
2 |
|
addsproplem2.2 |
⊢ ( 𝜑 → 𝑋 ∈ No ) |
3 |
|
addsproplem2.3 |
⊢ ( 𝜑 → 𝑌 ∈ No ) |
4 |
|
fvex |
⊢ ( L ‘ 𝑋 ) ∈ V |
5 |
4
|
abrexex |
⊢ { 𝑝 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑝 = ( 𝑙 +s 𝑌 ) } ∈ V |
6 |
5
|
a1i |
⊢ ( 𝜑 → { 𝑝 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑝 = ( 𝑙 +s 𝑌 ) } ∈ V ) |
7 |
|
fvex |
⊢ ( L ‘ 𝑌 ) ∈ V |
8 |
7
|
abrexex |
⊢ { 𝑞 ∣ ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑞 = ( 𝑋 +s 𝑚 ) } ∈ V |
9 |
8
|
a1i |
⊢ ( 𝜑 → { 𝑞 ∣ ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑞 = ( 𝑋 +s 𝑚 ) } ∈ V ) |
10 |
6 9
|
unexd |
⊢ ( 𝜑 → ( { 𝑝 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑝 = ( 𝑙 +s 𝑌 ) } ∪ { 𝑞 ∣ ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑞 = ( 𝑋 +s 𝑚 ) } ) ∈ V ) |
11 |
|
fvex |
⊢ ( R ‘ 𝑋 ) ∈ V |
12 |
11
|
abrexex |
⊢ { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑤 = ( 𝑟 +s 𝑌 ) } ∈ V |
13 |
12
|
a1i |
⊢ ( 𝜑 → { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑤 = ( 𝑟 +s 𝑌 ) } ∈ V ) |
14 |
|
fvex |
⊢ ( R ‘ 𝑌 ) ∈ V |
15 |
14
|
abrexex |
⊢ { 𝑡 ∣ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑡 = ( 𝑋 +s 𝑠 ) } ∈ V |
16 |
15
|
a1i |
⊢ ( 𝜑 → { 𝑡 ∣ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑡 = ( 𝑋 +s 𝑠 ) } ∈ V ) |
17 |
13 16
|
unexd |
⊢ ( 𝜑 → ( { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑤 = ( 𝑟 +s 𝑌 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑡 = ( 𝑋 +s 𝑠 ) } ) ∈ V ) |
18 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ( L ‘ 𝑋 ) ) → ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ∀ 𝑧 ∈ No ( ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) ) |
19 |
|
leftssno |
⊢ ( L ‘ 𝑋 ) ⊆ No |
20 |
19
|
sseli |
⊢ ( 𝑙 ∈ ( L ‘ 𝑋 ) → 𝑙 ∈ No ) |
21 |
20
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ( L ‘ 𝑋 ) ) → 𝑙 ∈ No ) |
22 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ( L ‘ 𝑋 ) ) → 𝑌 ∈ No ) |
23 |
|
0sno |
⊢ 0s ∈ No |
24 |
23
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ( L ‘ 𝑋 ) ) → 0s ∈ No ) |
25 |
|
bday0s |
⊢ ( bday ‘ 0s ) = ∅ |
26 |
25
|
oveq2i |
⊢ ( ( bday ‘ 𝑙 ) +no ( bday ‘ 0s ) ) = ( ( bday ‘ 𝑙 ) +no ∅ ) |
27 |
|
bdayelon |
⊢ ( bday ‘ 𝑙 ) ∈ On |
28 |
|
naddrid |
⊢ ( ( bday ‘ 𝑙 ) ∈ On → ( ( bday ‘ 𝑙 ) +no ∅ ) = ( bday ‘ 𝑙 ) ) |
29 |
27 28
|
ax-mp |
⊢ ( ( bday ‘ 𝑙 ) +no ∅ ) = ( bday ‘ 𝑙 ) |
30 |
26 29
|
eqtri |
⊢ ( ( bday ‘ 𝑙 ) +no ( bday ‘ 0s ) ) = ( bday ‘ 𝑙 ) |
31 |
30
|
uneq2i |
⊢ ( ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑙 ) +no ( bday ‘ 0s ) ) ) = ( ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑌 ) ) ∪ ( bday ‘ 𝑙 ) ) |
32 |
|
bdayelon |
⊢ ( bday ‘ 𝑌 ) ∈ On |
33 |
|
naddword1 |
⊢ ( ( ( bday ‘ 𝑙 ) ∈ On ∧ ( bday ‘ 𝑌 ) ∈ On ) → ( bday ‘ 𝑙 ) ⊆ ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑌 ) ) ) |
34 |
27 32 33
|
mp2an |
⊢ ( bday ‘ 𝑙 ) ⊆ ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑌 ) ) |
35 |
|
ssequn2 |
⊢ ( ( bday ‘ 𝑙 ) ⊆ ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑌 ) ) ↔ ( ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑌 ) ) ∪ ( bday ‘ 𝑙 ) ) = ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑌 ) ) ) |
36 |
34 35
|
mpbi |
⊢ ( ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑌 ) ) ∪ ( bday ‘ 𝑙 ) ) = ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑌 ) ) |
37 |
31 36
|
eqtri |
⊢ ( ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑙 ) +no ( bday ‘ 0s ) ) ) = ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑌 ) ) |
38 |
|
leftssold |
⊢ ( L ‘ 𝑋 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) |
39 |
38
|
sseli |
⊢ ( 𝑙 ∈ ( L ‘ 𝑋 ) → 𝑙 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ) |
40 |
|
bdayelon |
⊢ ( bday ‘ 𝑋 ) ∈ On |
41 |
|
oldbday |
⊢ ( ( ( bday ‘ 𝑋 ) ∈ On ∧ 𝑙 ∈ No ) → ( 𝑙 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ↔ ( bday ‘ 𝑙 ) ∈ ( bday ‘ 𝑋 ) ) ) |
42 |
40 20 41
|
sylancr |
⊢ ( 𝑙 ∈ ( L ‘ 𝑋 ) → ( 𝑙 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ↔ ( bday ‘ 𝑙 ) ∈ ( bday ‘ 𝑋 ) ) ) |
43 |
39 42
|
mpbid |
⊢ ( 𝑙 ∈ ( L ‘ 𝑋 ) → ( bday ‘ 𝑙 ) ∈ ( bday ‘ 𝑋 ) ) |
44 |
|
naddel1 |
⊢ ( ( ( bday ‘ 𝑙 ) ∈ On ∧ ( bday ‘ 𝑋 ) ∈ On ∧ ( bday ‘ 𝑌 ) ∈ On ) → ( ( bday ‘ 𝑙 ) ∈ ( bday ‘ 𝑋 ) ↔ ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑌 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) ) |
45 |
27 40 32 44
|
mp3an |
⊢ ( ( bday ‘ 𝑙 ) ∈ ( bday ‘ 𝑋 ) ↔ ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑌 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
46 |
43 45
|
sylib |
⊢ ( 𝑙 ∈ ( L ‘ 𝑋 ) → ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑌 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
47 |
46
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ( L ‘ 𝑋 ) ) → ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑌 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
48 |
|
elun1 |
⊢ ( ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑌 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) → ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑌 ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) |
49 |
47 48
|
syl |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ( L ‘ 𝑋 ) ) → ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑌 ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) |
50 |
37 49
|
eqeltrid |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ( L ‘ 𝑋 ) ) → ( ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑙 ) +no ( bday ‘ 0s ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) |
51 |
18 21 22 24 50
|
addsproplem1 |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ( L ‘ 𝑋 ) ) → ( ( 𝑙 +s 𝑌 ) ∈ No ∧ ( 𝑌 <s 0s → ( 𝑌 +s 𝑙 ) <s ( 0s +s 𝑙 ) ) ) ) |
52 |
51
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ( L ‘ 𝑋 ) ) → ( 𝑙 +s 𝑌 ) ∈ No ) |
53 |
|
eleq1a |
⊢ ( ( 𝑙 +s 𝑌 ) ∈ No → ( 𝑝 = ( 𝑙 +s 𝑌 ) → 𝑝 ∈ No ) ) |
54 |
52 53
|
syl |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ( L ‘ 𝑋 ) ) → ( 𝑝 = ( 𝑙 +s 𝑌 ) → 𝑝 ∈ No ) ) |
55 |
54
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑝 = ( 𝑙 +s 𝑌 ) → 𝑝 ∈ No ) ) |
56 |
55
|
abssdv |
⊢ ( 𝜑 → { 𝑝 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑝 = ( 𝑙 +s 𝑌 ) } ⊆ No ) |
57 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( L ‘ 𝑌 ) ) → ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ∀ 𝑧 ∈ No ( ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) ) |
58 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( L ‘ 𝑌 ) ) → 𝑋 ∈ No ) |
59 |
|
leftssno |
⊢ ( L ‘ 𝑌 ) ⊆ No |
60 |
59
|
sseli |
⊢ ( 𝑚 ∈ ( L ‘ 𝑌 ) → 𝑚 ∈ No ) |
61 |
60
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( L ‘ 𝑌 ) ) → 𝑚 ∈ No ) |
62 |
23
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( L ‘ 𝑌 ) ) → 0s ∈ No ) |
63 |
25
|
oveq2i |
⊢ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 0s ) ) = ( ( bday ‘ 𝑋 ) +no ∅ ) |
64 |
|
naddrid |
⊢ ( ( bday ‘ 𝑋 ) ∈ On → ( ( bday ‘ 𝑋 ) +no ∅ ) = ( bday ‘ 𝑋 ) ) |
65 |
40 64
|
ax-mp |
⊢ ( ( bday ‘ 𝑋 ) +no ∅ ) = ( bday ‘ 𝑋 ) |
66 |
63 65
|
eqtri |
⊢ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 0s ) ) = ( bday ‘ 𝑋 ) |
67 |
66
|
uneq2i |
⊢ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 0s ) ) ) = ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ∪ ( bday ‘ 𝑋 ) ) |
68 |
|
bdayelon |
⊢ ( bday ‘ 𝑚 ) ∈ On |
69 |
|
naddword1 |
⊢ ( ( ( bday ‘ 𝑋 ) ∈ On ∧ ( bday ‘ 𝑚 ) ∈ On ) → ( bday ‘ 𝑋 ) ⊆ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ) |
70 |
40 68 69
|
mp2an |
⊢ ( bday ‘ 𝑋 ) ⊆ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) |
71 |
|
ssequn2 |
⊢ ( ( bday ‘ 𝑋 ) ⊆ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ↔ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ∪ ( bday ‘ 𝑋 ) ) = ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ) |
72 |
70 71
|
mpbi |
⊢ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ∪ ( bday ‘ 𝑋 ) ) = ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) |
73 |
67 72
|
eqtri |
⊢ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 0s ) ) ) = ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) |
74 |
|
leftssold |
⊢ ( L ‘ 𝑌 ) ⊆ ( O ‘ ( bday ‘ 𝑌 ) ) |
75 |
74
|
sseli |
⊢ ( 𝑚 ∈ ( L ‘ 𝑌 ) → 𝑚 ∈ ( O ‘ ( bday ‘ 𝑌 ) ) ) |
76 |
|
oldbday |
⊢ ( ( ( bday ‘ 𝑌 ) ∈ On ∧ 𝑚 ∈ No ) → ( 𝑚 ∈ ( O ‘ ( bday ‘ 𝑌 ) ) ↔ ( bday ‘ 𝑚 ) ∈ ( bday ‘ 𝑌 ) ) ) |
77 |
32 60 76
|
sylancr |
⊢ ( 𝑚 ∈ ( L ‘ 𝑌 ) → ( 𝑚 ∈ ( O ‘ ( bday ‘ 𝑌 ) ) ↔ ( bday ‘ 𝑚 ) ∈ ( bday ‘ 𝑌 ) ) ) |
78 |
75 77
|
mpbid |
⊢ ( 𝑚 ∈ ( L ‘ 𝑌 ) → ( bday ‘ 𝑚 ) ∈ ( bday ‘ 𝑌 ) ) |
79 |
|
naddel2 |
⊢ ( ( ( bday ‘ 𝑚 ) ∈ On ∧ ( bday ‘ 𝑌 ) ∈ On ∧ ( bday ‘ 𝑋 ) ∈ On ) → ( ( bday ‘ 𝑚 ) ∈ ( bday ‘ 𝑌 ) ↔ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) ) |
80 |
68 32 40 79
|
mp3an |
⊢ ( ( bday ‘ 𝑚 ) ∈ ( bday ‘ 𝑌 ) ↔ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
81 |
78 80
|
sylib |
⊢ ( 𝑚 ∈ ( L ‘ 𝑌 ) → ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
82 |
81
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( L ‘ 𝑌 ) ) → ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
83 |
|
elun1 |
⊢ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) → ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) |
84 |
82 83
|
syl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( L ‘ 𝑌 ) ) → ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) |
85 |
73 84
|
eqeltrid |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( L ‘ 𝑌 ) ) → ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 0s ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) |
86 |
57 58 61 62 85
|
addsproplem1 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( L ‘ 𝑌 ) ) → ( ( 𝑋 +s 𝑚 ) ∈ No ∧ ( 𝑚 <s 0s → ( 𝑚 +s 𝑋 ) <s ( 0s +s 𝑋 ) ) ) ) |
87 |
86
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( L ‘ 𝑌 ) ) → ( 𝑋 +s 𝑚 ) ∈ No ) |
88 |
|
eleq1a |
⊢ ( ( 𝑋 +s 𝑚 ) ∈ No → ( 𝑞 = ( 𝑋 +s 𝑚 ) → 𝑞 ∈ No ) ) |
89 |
87 88
|
syl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( L ‘ 𝑌 ) ) → ( 𝑞 = ( 𝑋 +s 𝑚 ) → 𝑞 ∈ No ) ) |
90 |
89
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑞 = ( 𝑋 +s 𝑚 ) → 𝑞 ∈ No ) ) |
91 |
90
|
abssdv |
⊢ ( 𝜑 → { 𝑞 ∣ ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑞 = ( 𝑋 +s 𝑚 ) } ⊆ No ) |
92 |
56 91
|
unssd |
⊢ ( 𝜑 → ( { 𝑝 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑝 = ( 𝑙 +s 𝑌 ) } ∪ { 𝑞 ∣ ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑞 = ( 𝑋 +s 𝑚 ) } ) ⊆ No ) |
93 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) → ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ∀ 𝑧 ∈ No ( ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) ) |
94 |
|
rightssno |
⊢ ( R ‘ 𝑋 ) ⊆ No |
95 |
94
|
sseli |
⊢ ( 𝑟 ∈ ( R ‘ 𝑋 ) → 𝑟 ∈ No ) |
96 |
95
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) → 𝑟 ∈ No ) |
97 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) → 𝑌 ∈ No ) |
98 |
23
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) → 0s ∈ No ) |
99 |
25
|
oveq2i |
⊢ ( ( bday ‘ 𝑟 ) +no ( bday ‘ 0s ) ) = ( ( bday ‘ 𝑟 ) +no ∅ ) |
100 |
|
bdayelon |
⊢ ( bday ‘ 𝑟 ) ∈ On |
101 |
|
naddrid |
⊢ ( ( bday ‘ 𝑟 ) ∈ On → ( ( bday ‘ 𝑟 ) +no ∅ ) = ( bday ‘ 𝑟 ) ) |
102 |
100 101
|
ax-mp |
⊢ ( ( bday ‘ 𝑟 ) +no ∅ ) = ( bday ‘ 𝑟 ) |
103 |
99 102
|
eqtri |
⊢ ( ( bday ‘ 𝑟 ) +no ( bday ‘ 0s ) ) = ( bday ‘ 𝑟 ) |
104 |
103
|
uneq2i |
⊢ ( ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑟 ) +no ( bday ‘ 0s ) ) ) = ( ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑌 ) ) ∪ ( bday ‘ 𝑟 ) ) |
105 |
|
naddword1 |
⊢ ( ( ( bday ‘ 𝑟 ) ∈ On ∧ ( bday ‘ 𝑌 ) ∈ On ) → ( bday ‘ 𝑟 ) ⊆ ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑌 ) ) ) |
106 |
100 32 105
|
mp2an |
⊢ ( bday ‘ 𝑟 ) ⊆ ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑌 ) ) |
107 |
|
ssequn2 |
⊢ ( ( bday ‘ 𝑟 ) ⊆ ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑌 ) ) ↔ ( ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑌 ) ) ∪ ( bday ‘ 𝑟 ) ) = ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑌 ) ) ) |
108 |
106 107
|
mpbi |
⊢ ( ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑌 ) ) ∪ ( bday ‘ 𝑟 ) ) = ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑌 ) ) |
109 |
104 108
|
eqtri |
⊢ ( ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑟 ) +no ( bday ‘ 0s ) ) ) = ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑌 ) ) |
110 |
|
rightssold |
⊢ ( R ‘ 𝑋 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) |
111 |
110
|
sseli |
⊢ ( 𝑟 ∈ ( R ‘ 𝑋 ) → 𝑟 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ) |
112 |
|
oldbday |
⊢ ( ( ( bday ‘ 𝑋 ) ∈ On ∧ 𝑟 ∈ No ) → ( 𝑟 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ↔ ( bday ‘ 𝑟 ) ∈ ( bday ‘ 𝑋 ) ) ) |
113 |
40 95 112
|
sylancr |
⊢ ( 𝑟 ∈ ( R ‘ 𝑋 ) → ( 𝑟 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ↔ ( bday ‘ 𝑟 ) ∈ ( bday ‘ 𝑋 ) ) ) |
114 |
111 113
|
mpbid |
⊢ ( 𝑟 ∈ ( R ‘ 𝑋 ) → ( bday ‘ 𝑟 ) ∈ ( bday ‘ 𝑋 ) ) |
115 |
|
naddel1 |
⊢ ( ( ( bday ‘ 𝑟 ) ∈ On ∧ ( bday ‘ 𝑋 ) ∈ On ∧ ( bday ‘ 𝑌 ) ∈ On ) → ( ( bday ‘ 𝑟 ) ∈ ( bday ‘ 𝑋 ) ↔ ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑌 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) ) |
116 |
100 40 32 115
|
mp3an |
⊢ ( ( bday ‘ 𝑟 ) ∈ ( bday ‘ 𝑋 ) ↔ ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑌 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
117 |
114 116
|
sylib |
⊢ ( 𝑟 ∈ ( R ‘ 𝑋 ) → ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑌 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
118 |
117
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) → ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑌 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
119 |
|
elun1 |
⊢ ( ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑌 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) → ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑌 ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) |
120 |
118 119
|
syl |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) → ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑌 ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) |
121 |
109 120
|
eqeltrid |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) → ( ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑟 ) +no ( bday ‘ 0s ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) |
122 |
93 96 97 98 121
|
addsproplem1 |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) → ( ( 𝑟 +s 𝑌 ) ∈ No ∧ ( 𝑌 <s 0s → ( 𝑌 +s 𝑟 ) <s ( 0s +s 𝑟 ) ) ) ) |
123 |
122
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) → ( 𝑟 +s 𝑌 ) ∈ No ) |
124 |
|
eleq1a |
⊢ ( ( 𝑟 +s 𝑌 ) ∈ No → ( 𝑤 = ( 𝑟 +s 𝑌 ) → 𝑤 ∈ No ) ) |
125 |
123 124
|
syl |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) → ( 𝑤 = ( 𝑟 +s 𝑌 ) → 𝑤 ∈ No ) ) |
126 |
125
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑤 = ( 𝑟 +s 𝑌 ) → 𝑤 ∈ No ) ) |
127 |
126
|
abssdv |
⊢ ( 𝜑 → { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑤 = ( 𝑟 +s 𝑌 ) } ⊆ No ) |
128 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) → ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ∀ 𝑧 ∈ No ( ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) ) |
129 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) → 𝑋 ∈ No ) |
130 |
|
rightssno |
⊢ ( R ‘ 𝑌 ) ⊆ No |
131 |
130
|
sseli |
⊢ ( 𝑠 ∈ ( R ‘ 𝑌 ) → 𝑠 ∈ No ) |
132 |
131
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) → 𝑠 ∈ No ) |
133 |
23
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) → 0s ∈ No ) |
134 |
66
|
uneq2i |
⊢ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 0s ) ) ) = ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) ∪ ( bday ‘ 𝑋 ) ) |
135 |
|
bdayelon |
⊢ ( bday ‘ 𝑠 ) ∈ On |
136 |
|
naddword1 |
⊢ ( ( ( bday ‘ 𝑋 ) ∈ On ∧ ( bday ‘ 𝑠 ) ∈ On ) → ( bday ‘ 𝑋 ) ⊆ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) ) |
137 |
40 135 136
|
mp2an |
⊢ ( bday ‘ 𝑋 ) ⊆ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) |
138 |
|
ssequn2 |
⊢ ( ( bday ‘ 𝑋 ) ⊆ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) ↔ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) ∪ ( bday ‘ 𝑋 ) ) = ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) ) |
139 |
137 138
|
mpbi |
⊢ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) ∪ ( bday ‘ 𝑋 ) ) = ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) |
140 |
134 139
|
eqtri |
⊢ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 0s ) ) ) = ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) |
141 |
|
rightssold |
⊢ ( R ‘ 𝑌 ) ⊆ ( O ‘ ( bday ‘ 𝑌 ) ) |
142 |
141
|
sseli |
⊢ ( 𝑠 ∈ ( R ‘ 𝑌 ) → 𝑠 ∈ ( O ‘ ( bday ‘ 𝑌 ) ) ) |
143 |
|
oldbday |
⊢ ( ( ( bday ‘ 𝑌 ) ∈ On ∧ 𝑠 ∈ No ) → ( 𝑠 ∈ ( O ‘ ( bday ‘ 𝑌 ) ) ↔ ( bday ‘ 𝑠 ) ∈ ( bday ‘ 𝑌 ) ) ) |
144 |
32 131 143
|
sylancr |
⊢ ( 𝑠 ∈ ( R ‘ 𝑌 ) → ( 𝑠 ∈ ( O ‘ ( bday ‘ 𝑌 ) ) ↔ ( bday ‘ 𝑠 ) ∈ ( bday ‘ 𝑌 ) ) ) |
145 |
142 144
|
mpbid |
⊢ ( 𝑠 ∈ ( R ‘ 𝑌 ) → ( bday ‘ 𝑠 ) ∈ ( bday ‘ 𝑌 ) ) |
146 |
|
naddel2 |
⊢ ( ( ( bday ‘ 𝑠 ) ∈ On ∧ ( bday ‘ 𝑌 ) ∈ On ∧ ( bday ‘ 𝑋 ) ∈ On ) → ( ( bday ‘ 𝑠 ) ∈ ( bday ‘ 𝑌 ) ↔ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) ) |
147 |
135 32 40 146
|
mp3an |
⊢ ( ( bday ‘ 𝑠 ) ∈ ( bday ‘ 𝑌 ) ↔ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
148 |
145 147
|
sylib |
⊢ ( 𝑠 ∈ ( R ‘ 𝑌 ) → ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
149 |
148
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) → ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
150 |
|
elun1 |
⊢ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) → ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) |
151 |
149 150
|
syl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) → ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) |
152 |
140 151
|
eqeltrid |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) → ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 0s ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) |
153 |
128 129 132 133 152
|
addsproplem1 |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) → ( ( 𝑋 +s 𝑠 ) ∈ No ∧ ( 𝑠 <s 0s → ( 𝑠 +s 𝑋 ) <s ( 0s +s 𝑋 ) ) ) ) |
154 |
153
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) → ( 𝑋 +s 𝑠 ) ∈ No ) |
155 |
|
eleq1a |
⊢ ( ( 𝑋 +s 𝑠 ) ∈ No → ( 𝑡 = ( 𝑋 +s 𝑠 ) → 𝑡 ∈ No ) ) |
156 |
154 155
|
syl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) → ( 𝑡 = ( 𝑋 +s 𝑠 ) → 𝑡 ∈ No ) ) |
157 |
156
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑡 = ( 𝑋 +s 𝑠 ) → 𝑡 ∈ No ) ) |
158 |
157
|
abssdv |
⊢ ( 𝜑 → { 𝑡 ∣ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑡 = ( 𝑋 +s 𝑠 ) } ⊆ No ) |
159 |
127 158
|
unssd |
⊢ ( 𝜑 → ( { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑤 = ( 𝑟 +s 𝑌 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑡 = ( 𝑋 +s 𝑠 ) } ) ⊆ No ) |
160 |
|
elun |
⊢ ( 𝑎 ∈ ( { 𝑝 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑝 = ( 𝑙 +s 𝑌 ) } ∪ { 𝑞 ∣ ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑞 = ( 𝑋 +s 𝑚 ) } ) ↔ ( 𝑎 ∈ { 𝑝 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑝 = ( 𝑙 +s 𝑌 ) } ∨ 𝑎 ∈ { 𝑞 ∣ ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑞 = ( 𝑋 +s 𝑚 ) } ) ) |
161 |
|
vex |
⊢ 𝑎 ∈ V |
162 |
|
eqeq1 |
⊢ ( 𝑝 = 𝑎 → ( 𝑝 = ( 𝑙 +s 𝑌 ) ↔ 𝑎 = ( 𝑙 +s 𝑌 ) ) ) |
163 |
162
|
rexbidv |
⊢ ( 𝑝 = 𝑎 → ( ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑝 = ( 𝑙 +s 𝑌 ) ↔ ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑎 = ( 𝑙 +s 𝑌 ) ) ) |
164 |
161 163
|
elab |
⊢ ( 𝑎 ∈ { 𝑝 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑝 = ( 𝑙 +s 𝑌 ) } ↔ ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑎 = ( 𝑙 +s 𝑌 ) ) |
165 |
|
eqeq1 |
⊢ ( 𝑞 = 𝑎 → ( 𝑞 = ( 𝑋 +s 𝑚 ) ↔ 𝑎 = ( 𝑋 +s 𝑚 ) ) ) |
166 |
165
|
rexbidv |
⊢ ( 𝑞 = 𝑎 → ( ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑞 = ( 𝑋 +s 𝑚 ) ↔ ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑎 = ( 𝑋 +s 𝑚 ) ) ) |
167 |
161 166
|
elab |
⊢ ( 𝑎 ∈ { 𝑞 ∣ ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑞 = ( 𝑋 +s 𝑚 ) } ↔ ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑎 = ( 𝑋 +s 𝑚 ) ) |
168 |
164 167
|
orbi12i |
⊢ ( ( 𝑎 ∈ { 𝑝 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑝 = ( 𝑙 +s 𝑌 ) } ∨ 𝑎 ∈ { 𝑞 ∣ ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑞 = ( 𝑋 +s 𝑚 ) } ) ↔ ( ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑎 = ( 𝑙 +s 𝑌 ) ∨ ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑎 = ( 𝑋 +s 𝑚 ) ) ) |
169 |
160 168
|
bitri |
⊢ ( 𝑎 ∈ ( { 𝑝 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑝 = ( 𝑙 +s 𝑌 ) } ∪ { 𝑞 ∣ ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑞 = ( 𝑋 +s 𝑚 ) } ) ↔ ( ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑎 = ( 𝑙 +s 𝑌 ) ∨ ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑎 = ( 𝑋 +s 𝑚 ) ) ) |
170 |
|
elun |
⊢ ( 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑤 = ( 𝑟 +s 𝑌 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑡 = ( 𝑋 +s 𝑠 ) } ) ↔ ( 𝑏 ∈ { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑤 = ( 𝑟 +s 𝑌 ) } ∨ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑡 = ( 𝑋 +s 𝑠 ) } ) ) |
171 |
|
vex |
⊢ 𝑏 ∈ V |
172 |
|
eqeq1 |
⊢ ( 𝑤 = 𝑏 → ( 𝑤 = ( 𝑟 +s 𝑌 ) ↔ 𝑏 = ( 𝑟 +s 𝑌 ) ) ) |
173 |
172
|
rexbidv |
⊢ ( 𝑤 = 𝑏 → ( ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑤 = ( 𝑟 +s 𝑌 ) ↔ ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑏 = ( 𝑟 +s 𝑌 ) ) ) |
174 |
171 173
|
elab |
⊢ ( 𝑏 ∈ { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑤 = ( 𝑟 +s 𝑌 ) } ↔ ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑏 = ( 𝑟 +s 𝑌 ) ) |
175 |
|
eqeq1 |
⊢ ( 𝑡 = 𝑏 → ( 𝑡 = ( 𝑋 +s 𝑠 ) ↔ 𝑏 = ( 𝑋 +s 𝑠 ) ) ) |
176 |
175
|
rexbidv |
⊢ ( 𝑡 = 𝑏 → ( ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑡 = ( 𝑋 +s 𝑠 ) ↔ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑏 = ( 𝑋 +s 𝑠 ) ) ) |
177 |
171 176
|
elab |
⊢ ( 𝑏 ∈ { 𝑡 ∣ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑡 = ( 𝑋 +s 𝑠 ) } ↔ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑏 = ( 𝑋 +s 𝑠 ) ) |
178 |
174 177
|
orbi12i |
⊢ ( ( 𝑏 ∈ { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑤 = ( 𝑟 +s 𝑌 ) } ∨ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑡 = ( 𝑋 +s 𝑠 ) } ) ↔ ( ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑏 = ( 𝑟 +s 𝑌 ) ∨ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑏 = ( 𝑋 +s 𝑠 ) ) ) |
179 |
170 178
|
bitri |
⊢ ( 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑤 = ( 𝑟 +s 𝑌 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑡 = ( 𝑋 +s 𝑠 ) } ) ↔ ( ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑏 = ( 𝑟 +s 𝑌 ) ∨ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑏 = ( 𝑋 +s 𝑠 ) ) ) |
180 |
169 179
|
anbi12i |
⊢ ( ( 𝑎 ∈ ( { 𝑝 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑝 = ( 𝑙 +s 𝑌 ) } ∪ { 𝑞 ∣ ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑞 = ( 𝑋 +s 𝑚 ) } ) ∧ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑤 = ( 𝑟 +s 𝑌 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑡 = ( 𝑋 +s 𝑠 ) } ) ) ↔ ( ( ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑎 = ( 𝑙 +s 𝑌 ) ∨ ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑎 = ( 𝑋 +s 𝑚 ) ) ∧ ( ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑏 = ( 𝑟 +s 𝑌 ) ∨ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑏 = ( 𝑋 +s 𝑠 ) ) ) ) |
181 |
|
anddi |
⊢ ( ( ( ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑎 = ( 𝑙 +s 𝑌 ) ∨ ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑎 = ( 𝑋 +s 𝑚 ) ) ∧ ( ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑏 = ( 𝑟 +s 𝑌 ) ∨ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑏 = ( 𝑋 +s 𝑠 ) ) ) ↔ ( ( ( ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑎 = ( 𝑙 +s 𝑌 ) ∧ ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑏 = ( 𝑟 +s 𝑌 ) ) ∨ ( ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑎 = ( 𝑙 +s 𝑌 ) ∧ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑏 = ( 𝑋 +s 𝑠 ) ) ) ∨ ( ( ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑎 = ( 𝑋 +s 𝑚 ) ∧ ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑏 = ( 𝑟 +s 𝑌 ) ) ∨ ( ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑎 = ( 𝑋 +s 𝑚 ) ∧ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑏 = ( 𝑋 +s 𝑠 ) ) ) ) ) |
182 |
180 181
|
bitri |
⊢ ( ( 𝑎 ∈ ( { 𝑝 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑝 = ( 𝑙 +s 𝑌 ) } ∪ { 𝑞 ∣ ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑞 = ( 𝑋 +s 𝑚 ) } ) ∧ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑤 = ( 𝑟 +s 𝑌 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑡 = ( 𝑋 +s 𝑠 ) } ) ) ↔ ( ( ( ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑎 = ( 𝑙 +s 𝑌 ) ∧ ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑏 = ( 𝑟 +s 𝑌 ) ) ∨ ( ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑎 = ( 𝑙 +s 𝑌 ) ∧ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑏 = ( 𝑋 +s 𝑠 ) ) ) ∨ ( ( ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑎 = ( 𝑋 +s 𝑚 ) ∧ ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑏 = ( 𝑟 +s 𝑌 ) ) ∨ ( ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑎 = ( 𝑋 +s 𝑚 ) ∧ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑏 = ( 𝑋 +s 𝑠 ) ) ) ) ) |
183 |
|
reeanv |
⊢ ( ∃ 𝑙 ∈ ( L ‘ 𝑋 ) ∃ 𝑟 ∈ ( R ‘ 𝑋 ) ( 𝑎 = ( 𝑙 +s 𝑌 ) ∧ 𝑏 = ( 𝑟 +s 𝑌 ) ) ↔ ( ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑎 = ( 𝑙 +s 𝑌 ) ∧ ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑏 = ( 𝑟 +s 𝑌 ) ) ) |
184 |
|
lltropt |
⊢ ( L ‘ 𝑋 ) <<s ( R ‘ 𝑋 ) |
185 |
184
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( L ‘ 𝑋 ) <<s ( R ‘ 𝑋 ) ) |
186 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → 𝑙 ∈ ( L ‘ 𝑋 ) ) |
187 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → 𝑟 ∈ ( R ‘ 𝑋 ) ) |
188 |
185 186 187
|
ssltsepcd |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → 𝑙 <s 𝑟 ) |
189 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ∀ 𝑧 ∈ No ( ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) ) |
190 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → 𝑌 ∈ No ) |
191 |
20
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → 𝑙 ∈ No ) |
192 |
95
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → 𝑟 ∈ No ) |
193 |
|
naddcom |
⊢ ( ( ( bday ‘ 𝑌 ) ∈ On ∧ ( bday ‘ 𝑙 ) ∈ On ) → ( ( bday ‘ 𝑌 ) +no ( bday ‘ 𝑙 ) ) = ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑌 ) ) ) |
194 |
32 27 193
|
mp2an |
⊢ ( ( bday ‘ 𝑌 ) +no ( bday ‘ 𝑙 ) ) = ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑌 ) ) |
195 |
46
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑌 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
196 |
194 195
|
eqeltrid |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( ( bday ‘ 𝑌 ) +no ( bday ‘ 𝑙 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
197 |
|
naddcom |
⊢ ( ( ( bday ‘ 𝑌 ) ∈ On ∧ ( bday ‘ 𝑟 ) ∈ On ) → ( ( bday ‘ 𝑌 ) +no ( bday ‘ 𝑟 ) ) = ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑌 ) ) ) |
198 |
32 100 197
|
mp2an |
⊢ ( ( bday ‘ 𝑌 ) +no ( bday ‘ 𝑟 ) ) = ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑌 ) ) |
199 |
117
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑌 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
200 |
198 199
|
eqeltrid |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( ( bday ‘ 𝑌 ) +no ( bday ‘ 𝑟 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
201 |
|
naddcl |
⊢ ( ( ( bday ‘ 𝑌 ) ∈ On ∧ ( bday ‘ 𝑙 ) ∈ On ) → ( ( bday ‘ 𝑌 ) +no ( bday ‘ 𝑙 ) ) ∈ On ) |
202 |
32 27 201
|
mp2an |
⊢ ( ( bday ‘ 𝑌 ) +no ( bday ‘ 𝑙 ) ) ∈ On |
203 |
|
naddcl |
⊢ ( ( ( bday ‘ 𝑌 ) ∈ On ∧ ( bday ‘ 𝑟 ) ∈ On ) → ( ( bday ‘ 𝑌 ) +no ( bday ‘ 𝑟 ) ) ∈ On ) |
204 |
32 100 203
|
mp2an |
⊢ ( ( bday ‘ 𝑌 ) +no ( bday ‘ 𝑟 ) ) ∈ On |
205 |
|
naddcl |
⊢ ( ( ( bday ‘ 𝑋 ) ∈ On ∧ ( bday ‘ 𝑌 ) ∈ On ) → ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∈ On ) |
206 |
40 32 205
|
mp2an |
⊢ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∈ On |
207 |
|
onunel |
⊢ ( ( ( ( bday ‘ 𝑌 ) +no ( bday ‘ 𝑙 ) ) ∈ On ∧ ( ( bday ‘ 𝑌 ) +no ( bday ‘ 𝑟 ) ) ∈ On ∧ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∈ On ) → ( ( ( ( bday ‘ 𝑌 ) +no ( bday ‘ 𝑙 ) ) ∪ ( ( bday ‘ 𝑌 ) +no ( bday ‘ 𝑟 ) ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ↔ ( ( ( bday ‘ 𝑌 ) +no ( bday ‘ 𝑙 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∧ ( ( bday ‘ 𝑌 ) +no ( bday ‘ 𝑟 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) ) ) |
208 |
202 204 206 207
|
mp3an |
⊢ ( ( ( ( bday ‘ 𝑌 ) +no ( bday ‘ 𝑙 ) ) ∪ ( ( bday ‘ 𝑌 ) +no ( bday ‘ 𝑟 ) ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ↔ ( ( ( bday ‘ 𝑌 ) +no ( bday ‘ 𝑙 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∧ ( ( bday ‘ 𝑌 ) +no ( bday ‘ 𝑟 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) ) |
209 |
196 200 208
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( ( ( bday ‘ 𝑌 ) +no ( bday ‘ 𝑙 ) ) ∪ ( ( bday ‘ 𝑌 ) +no ( bday ‘ 𝑟 ) ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
210 |
|
elun1 |
⊢ ( ( ( ( bday ‘ 𝑌 ) +no ( bday ‘ 𝑙 ) ) ∪ ( ( bday ‘ 𝑌 ) +no ( bday ‘ 𝑟 ) ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) → ( ( ( bday ‘ 𝑌 ) +no ( bday ‘ 𝑙 ) ) ∪ ( ( bday ‘ 𝑌 ) +no ( bday ‘ 𝑟 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) |
211 |
209 210
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( ( ( bday ‘ 𝑌 ) +no ( bday ‘ 𝑙 ) ) ∪ ( ( bday ‘ 𝑌 ) +no ( bday ‘ 𝑟 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) |
212 |
189 190 191 192 211
|
addsproplem1 |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( ( 𝑌 +s 𝑙 ) ∈ No ∧ ( 𝑙 <s 𝑟 → ( 𝑙 +s 𝑌 ) <s ( 𝑟 +s 𝑌 ) ) ) ) |
213 |
212
|
simprd |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( 𝑙 <s 𝑟 → ( 𝑙 +s 𝑌 ) <s ( 𝑟 +s 𝑌 ) ) ) |
214 |
188 213
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( 𝑙 +s 𝑌 ) <s ( 𝑟 +s 𝑌 ) ) |
215 |
|
breq12 |
⊢ ( ( 𝑎 = ( 𝑙 +s 𝑌 ) ∧ 𝑏 = ( 𝑟 +s 𝑌 ) ) → ( 𝑎 <s 𝑏 ↔ ( 𝑙 +s 𝑌 ) <s ( 𝑟 +s 𝑌 ) ) ) |
216 |
214 215
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( ( 𝑎 = ( 𝑙 +s 𝑌 ) ∧ 𝑏 = ( 𝑟 +s 𝑌 ) ) → 𝑎 <s 𝑏 ) ) |
217 |
216
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑙 ∈ ( L ‘ 𝑋 ) ∃ 𝑟 ∈ ( R ‘ 𝑋 ) ( 𝑎 = ( 𝑙 +s 𝑌 ) ∧ 𝑏 = ( 𝑟 +s 𝑌 ) ) → 𝑎 <s 𝑏 ) ) |
218 |
183 217
|
biimtrrid |
⊢ ( 𝜑 → ( ( ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑎 = ( 𝑙 +s 𝑌 ) ∧ ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑏 = ( 𝑟 +s 𝑌 ) ) → 𝑎 <s 𝑏 ) ) |
219 |
|
reeanv |
⊢ ( ∃ 𝑙 ∈ ( L ‘ 𝑋 ) ∃ 𝑠 ∈ ( R ‘ 𝑌 ) ( 𝑎 = ( 𝑙 +s 𝑌 ) ∧ 𝑏 = ( 𝑋 +s 𝑠 ) ) ↔ ( ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑎 = ( 𝑙 +s 𝑌 ) ∧ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑏 = ( 𝑋 +s 𝑠 ) ) ) |
220 |
52
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( 𝑙 +s 𝑌 ) ∈ No ) |
221 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ∀ 𝑧 ∈ No ( ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) ) |
222 |
20
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → 𝑙 ∈ No ) |
223 |
131
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → 𝑠 ∈ No ) |
224 |
23
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → 0s ∈ No ) |
225 |
30
|
uneq2i |
⊢ ( ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑠 ) ) ∪ ( ( bday ‘ 𝑙 ) +no ( bday ‘ 0s ) ) ) = ( ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑠 ) ) ∪ ( bday ‘ 𝑙 ) ) |
226 |
|
naddword1 |
⊢ ( ( ( bday ‘ 𝑙 ) ∈ On ∧ ( bday ‘ 𝑠 ) ∈ On ) → ( bday ‘ 𝑙 ) ⊆ ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑠 ) ) ) |
227 |
27 135 226
|
mp2an |
⊢ ( bday ‘ 𝑙 ) ⊆ ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑠 ) ) |
228 |
|
ssequn2 |
⊢ ( ( bday ‘ 𝑙 ) ⊆ ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑠 ) ) ↔ ( ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑠 ) ) ∪ ( bday ‘ 𝑙 ) ) = ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑠 ) ) ) |
229 |
227 228
|
mpbi |
⊢ ( ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑠 ) ) ∪ ( bday ‘ 𝑙 ) ) = ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑠 ) ) |
230 |
225 229
|
eqtri |
⊢ ( ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑠 ) ) ∪ ( ( bday ‘ 𝑙 ) +no ( bday ‘ 0s ) ) ) = ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑠 ) ) |
231 |
|
naddel1 |
⊢ ( ( ( bday ‘ 𝑙 ) ∈ On ∧ ( bday ‘ 𝑋 ) ∈ On ∧ ( bday ‘ 𝑠 ) ∈ On ) → ( ( bday ‘ 𝑙 ) ∈ ( bday ‘ 𝑋 ) ↔ ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑠 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) ) ) |
232 |
27 40 135 231
|
mp3an |
⊢ ( ( bday ‘ 𝑙 ) ∈ ( bday ‘ 𝑋 ) ↔ ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑠 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) ) |
233 |
43 232
|
sylib |
⊢ ( 𝑙 ∈ ( L ‘ 𝑋 ) → ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑠 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) ) |
234 |
233
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑠 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) ) |
235 |
148
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
236 |
|
ontr1 |
⊢ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∈ On → ( ( ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑠 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) ∧ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) → ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑠 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) ) |
237 |
206 236
|
ax-mp |
⊢ ( ( ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑠 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) ∧ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) → ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑠 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
238 |
234 235 237
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑠 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
239 |
|
elun1 |
⊢ ( ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑠 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) → ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑠 ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) |
240 |
238 239
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑠 ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) |
241 |
230 240
|
eqeltrid |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑠 ) ) ∪ ( ( bday ‘ 𝑙 ) +no ( bday ‘ 0s ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) |
242 |
221 222 223 224 241
|
addsproplem1 |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( ( 𝑙 +s 𝑠 ) ∈ No ∧ ( 𝑠 <s 0s → ( 𝑠 +s 𝑙 ) <s ( 0s +s 𝑙 ) ) ) ) |
243 |
242
|
simpld |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( 𝑙 +s 𝑠 ) ∈ No ) |
244 |
154
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( 𝑋 +s 𝑠 ) ∈ No ) |
245 |
|
rightval |
⊢ ( R ‘ 𝑌 ) = { 𝑠 ∈ ( O ‘ ( bday ‘ 𝑌 ) ) ∣ 𝑌 <s 𝑠 } |
246 |
245
|
reqabi |
⊢ ( 𝑠 ∈ ( R ‘ 𝑌 ) ↔ ( 𝑠 ∈ ( O ‘ ( bday ‘ 𝑌 ) ) ∧ 𝑌 <s 𝑠 ) ) |
247 |
246
|
simprbi |
⊢ ( 𝑠 ∈ ( R ‘ 𝑌 ) → 𝑌 <s 𝑠 ) |
248 |
247
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → 𝑌 <s 𝑠 ) |
249 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → 𝑌 ∈ No ) |
250 |
46
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑌 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
251 |
|
naddcl |
⊢ ( ( ( bday ‘ 𝑙 ) ∈ On ∧ ( bday ‘ 𝑌 ) ∈ On ) → ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑌 ) ) ∈ On ) |
252 |
27 32 251
|
mp2an |
⊢ ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑌 ) ) ∈ On |
253 |
|
naddcl |
⊢ ( ( ( bday ‘ 𝑙 ) ∈ On ∧ ( bday ‘ 𝑠 ) ∈ On ) → ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑠 ) ) ∈ On ) |
254 |
27 135 253
|
mp2an |
⊢ ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑠 ) ) ∈ On |
255 |
|
onunel |
⊢ ( ( ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑌 ) ) ∈ On ∧ ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑠 ) ) ∈ On ∧ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∈ On ) → ( ( ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑠 ) ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ↔ ( ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑌 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∧ ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑠 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) ) ) |
256 |
252 254 206 255
|
mp3an |
⊢ ( ( ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑠 ) ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ↔ ( ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑌 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∧ ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑠 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) ) |
257 |
250 238 256
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑠 ) ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
258 |
|
elun1 |
⊢ ( ( ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑠 ) ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) → ( ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑠 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) |
259 |
257 258
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑠 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) |
260 |
221 222 249 223 259
|
addsproplem1 |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( ( 𝑙 +s 𝑌 ) ∈ No ∧ ( 𝑌 <s 𝑠 → ( 𝑌 +s 𝑙 ) <s ( 𝑠 +s 𝑙 ) ) ) ) |
261 |
260
|
simprd |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( 𝑌 <s 𝑠 → ( 𝑌 +s 𝑙 ) <s ( 𝑠 +s 𝑙 ) ) ) |
262 |
248 261
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( 𝑌 +s 𝑙 ) <s ( 𝑠 +s 𝑙 ) ) |
263 |
222 249
|
addscomd |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( 𝑙 +s 𝑌 ) = ( 𝑌 +s 𝑙 ) ) |
264 |
222 223
|
addscomd |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( 𝑙 +s 𝑠 ) = ( 𝑠 +s 𝑙 ) ) |
265 |
262 263 264
|
3brtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( 𝑙 +s 𝑌 ) <s ( 𝑙 +s 𝑠 ) ) |
266 |
|
leftval |
⊢ ( L ‘ 𝑋 ) = { 𝑙 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∣ 𝑙 <s 𝑋 } |
267 |
266
|
reqabi |
⊢ ( 𝑙 ∈ ( L ‘ 𝑋 ) ↔ ( 𝑙 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝑙 <s 𝑋 ) ) |
268 |
267
|
simprbi |
⊢ ( 𝑙 ∈ ( L ‘ 𝑋 ) → 𝑙 <s 𝑋 ) |
269 |
268
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → 𝑙 <s 𝑋 ) |
270 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → 𝑋 ∈ No ) |
271 |
|
naddcom |
⊢ ( ( ( bday ‘ 𝑠 ) ∈ On ∧ ( bday ‘ 𝑙 ) ∈ On ) → ( ( bday ‘ 𝑠 ) +no ( bday ‘ 𝑙 ) ) = ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑠 ) ) ) |
272 |
135 27 271
|
mp2an |
⊢ ( ( bday ‘ 𝑠 ) +no ( bday ‘ 𝑙 ) ) = ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑠 ) ) |
273 |
272 238
|
eqeltrid |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( ( bday ‘ 𝑠 ) +no ( bday ‘ 𝑙 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
274 |
|
naddcom |
⊢ ( ( ( bday ‘ 𝑠 ) ∈ On ∧ ( bday ‘ 𝑋 ) ∈ On ) → ( ( bday ‘ 𝑠 ) +no ( bday ‘ 𝑋 ) ) = ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) ) |
275 |
135 40 274
|
mp2an |
⊢ ( ( bday ‘ 𝑠 ) +no ( bday ‘ 𝑋 ) ) = ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) |
276 |
275 235
|
eqeltrid |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( ( bday ‘ 𝑠 ) +no ( bday ‘ 𝑋 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
277 |
|
naddcl |
⊢ ( ( ( bday ‘ 𝑠 ) ∈ On ∧ ( bday ‘ 𝑙 ) ∈ On ) → ( ( bday ‘ 𝑠 ) +no ( bday ‘ 𝑙 ) ) ∈ On ) |
278 |
135 27 277
|
mp2an |
⊢ ( ( bday ‘ 𝑠 ) +no ( bday ‘ 𝑙 ) ) ∈ On |
279 |
|
naddcl |
⊢ ( ( ( bday ‘ 𝑠 ) ∈ On ∧ ( bday ‘ 𝑋 ) ∈ On ) → ( ( bday ‘ 𝑠 ) +no ( bday ‘ 𝑋 ) ) ∈ On ) |
280 |
135 40 279
|
mp2an |
⊢ ( ( bday ‘ 𝑠 ) +no ( bday ‘ 𝑋 ) ) ∈ On |
281 |
|
onunel |
⊢ ( ( ( ( bday ‘ 𝑠 ) +no ( bday ‘ 𝑙 ) ) ∈ On ∧ ( ( bday ‘ 𝑠 ) +no ( bday ‘ 𝑋 ) ) ∈ On ∧ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∈ On ) → ( ( ( ( bday ‘ 𝑠 ) +no ( bday ‘ 𝑙 ) ) ∪ ( ( bday ‘ 𝑠 ) +no ( bday ‘ 𝑋 ) ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ↔ ( ( ( bday ‘ 𝑠 ) +no ( bday ‘ 𝑙 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∧ ( ( bday ‘ 𝑠 ) +no ( bday ‘ 𝑋 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) ) ) |
282 |
278 280 206 281
|
mp3an |
⊢ ( ( ( ( bday ‘ 𝑠 ) +no ( bday ‘ 𝑙 ) ) ∪ ( ( bday ‘ 𝑠 ) +no ( bday ‘ 𝑋 ) ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ↔ ( ( ( bday ‘ 𝑠 ) +no ( bday ‘ 𝑙 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∧ ( ( bday ‘ 𝑠 ) +no ( bday ‘ 𝑋 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) ) |
283 |
273 276 282
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( ( ( bday ‘ 𝑠 ) +no ( bday ‘ 𝑙 ) ) ∪ ( ( bday ‘ 𝑠 ) +no ( bday ‘ 𝑋 ) ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
284 |
|
elun1 |
⊢ ( ( ( ( bday ‘ 𝑠 ) +no ( bday ‘ 𝑙 ) ) ∪ ( ( bday ‘ 𝑠 ) +no ( bday ‘ 𝑋 ) ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) → ( ( ( bday ‘ 𝑠 ) +no ( bday ‘ 𝑙 ) ) ∪ ( ( bday ‘ 𝑠 ) +no ( bday ‘ 𝑋 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) |
285 |
283 284
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( ( ( bday ‘ 𝑠 ) +no ( bday ‘ 𝑙 ) ) ∪ ( ( bday ‘ 𝑠 ) +no ( bday ‘ 𝑋 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) |
286 |
221 223 222 270 285
|
addsproplem1 |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( ( 𝑠 +s 𝑙 ) ∈ No ∧ ( 𝑙 <s 𝑋 → ( 𝑙 +s 𝑠 ) <s ( 𝑋 +s 𝑠 ) ) ) ) |
287 |
286
|
simprd |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( 𝑙 <s 𝑋 → ( 𝑙 +s 𝑠 ) <s ( 𝑋 +s 𝑠 ) ) ) |
288 |
269 287
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( 𝑙 +s 𝑠 ) <s ( 𝑋 +s 𝑠 ) ) |
289 |
220 243 244 265 288
|
slttrd |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( 𝑙 +s 𝑌 ) <s ( 𝑋 +s 𝑠 ) ) |
290 |
|
breq12 |
⊢ ( ( 𝑎 = ( 𝑙 +s 𝑌 ) ∧ 𝑏 = ( 𝑋 +s 𝑠 ) ) → ( 𝑎 <s 𝑏 ↔ ( 𝑙 +s 𝑌 ) <s ( 𝑋 +s 𝑠 ) ) ) |
291 |
289 290
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( ( 𝑎 = ( 𝑙 +s 𝑌 ) ∧ 𝑏 = ( 𝑋 +s 𝑠 ) ) → 𝑎 <s 𝑏 ) ) |
292 |
291
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑙 ∈ ( L ‘ 𝑋 ) ∃ 𝑠 ∈ ( R ‘ 𝑌 ) ( 𝑎 = ( 𝑙 +s 𝑌 ) ∧ 𝑏 = ( 𝑋 +s 𝑠 ) ) → 𝑎 <s 𝑏 ) ) |
293 |
219 292
|
biimtrrid |
⊢ ( 𝜑 → ( ( ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑎 = ( 𝑙 +s 𝑌 ) ∧ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑏 = ( 𝑋 +s 𝑠 ) ) → 𝑎 <s 𝑏 ) ) |
294 |
218 293
|
jaod |
⊢ ( 𝜑 → ( ( ( ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑎 = ( 𝑙 +s 𝑌 ) ∧ ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑏 = ( 𝑟 +s 𝑌 ) ) ∨ ( ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑎 = ( 𝑙 +s 𝑌 ) ∧ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑏 = ( 𝑋 +s 𝑠 ) ) ) → 𝑎 <s 𝑏 ) ) |
295 |
|
reeanv |
⊢ ( ∃ 𝑚 ∈ ( L ‘ 𝑌 ) ∃ 𝑟 ∈ ( R ‘ 𝑋 ) ( 𝑎 = ( 𝑋 +s 𝑚 ) ∧ 𝑏 = ( 𝑟 +s 𝑌 ) ) ↔ ( ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑎 = ( 𝑋 +s 𝑚 ) ∧ ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑏 = ( 𝑟 +s 𝑌 ) ) ) |
296 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ∀ 𝑧 ∈ No ( ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) ) |
297 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → 𝑋 ∈ No ) |
298 |
60
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → 𝑚 ∈ No ) |
299 |
23
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → 0s ∈ No ) |
300 |
81
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
301 |
300 83
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) |
302 |
73 301
|
eqeltrid |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 0s ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) |
303 |
296 297 298 299 302
|
addsproplem1 |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( ( 𝑋 +s 𝑚 ) ∈ No ∧ ( 𝑚 <s 0s → ( 𝑚 +s 𝑋 ) <s ( 0s +s 𝑋 ) ) ) ) |
304 |
303
|
simpld |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( 𝑋 +s 𝑚 ) ∈ No ) |
305 |
95
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → 𝑟 ∈ No ) |
306 |
103
|
uneq2i |
⊢ ( ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑚 ) ) ∪ ( ( bday ‘ 𝑟 ) +no ( bday ‘ 0s ) ) ) = ( ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑚 ) ) ∪ ( bday ‘ 𝑟 ) ) |
307 |
|
naddword1 |
⊢ ( ( ( bday ‘ 𝑟 ) ∈ On ∧ ( bday ‘ 𝑚 ) ∈ On ) → ( bday ‘ 𝑟 ) ⊆ ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑚 ) ) ) |
308 |
100 68 307
|
mp2an |
⊢ ( bday ‘ 𝑟 ) ⊆ ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑚 ) ) |
309 |
|
ssequn2 |
⊢ ( ( bday ‘ 𝑟 ) ⊆ ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑚 ) ) ↔ ( ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑚 ) ) ∪ ( bday ‘ 𝑟 ) ) = ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑚 ) ) ) |
310 |
308 309
|
mpbi |
⊢ ( ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑚 ) ) ∪ ( bday ‘ 𝑟 ) ) = ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑚 ) ) |
311 |
306 310
|
eqtri |
⊢ ( ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑚 ) ) ∪ ( ( bday ‘ 𝑟 ) +no ( bday ‘ 0s ) ) ) = ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑚 ) ) |
312 |
|
naddel1 |
⊢ ( ( ( bday ‘ 𝑟 ) ∈ On ∧ ( bday ‘ 𝑋 ) ∈ On ∧ ( bday ‘ 𝑚 ) ∈ On ) → ( ( bday ‘ 𝑟 ) ∈ ( bday ‘ 𝑋 ) ↔ ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑚 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ) ) |
313 |
100 40 68 312
|
mp3an |
⊢ ( ( bday ‘ 𝑟 ) ∈ ( bday ‘ 𝑋 ) ↔ ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑚 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ) |
314 |
114 313
|
sylib |
⊢ ( 𝑟 ∈ ( R ‘ 𝑋 ) → ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑚 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ) |
315 |
314
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑚 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ) |
316 |
|
ontr1 |
⊢ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∈ On → ( ( ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑚 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ∧ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) → ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑚 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) ) |
317 |
206 316
|
ax-mp |
⊢ ( ( ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑚 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ∧ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) → ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑚 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
318 |
315 300 317
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑚 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
319 |
|
elun1 |
⊢ ( ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑚 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) → ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑚 ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) |
320 |
318 319
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑚 ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) |
321 |
311 320
|
eqeltrid |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑚 ) ) ∪ ( ( bday ‘ 𝑟 ) +no ( bday ‘ 0s ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) |
322 |
296 305 298 299 321
|
addsproplem1 |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( ( 𝑟 +s 𝑚 ) ∈ No ∧ ( 𝑚 <s 0s → ( 𝑚 +s 𝑟 ) <s ( 0s +s 𝑟 ) ) ) ) |
323 |
322
|
simpld |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( 𝑟 +s 𝑚 ) ∈ No ) |
324 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → 𝑌 ∈ No ) |
325 |
117
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑌 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
326 |
325 119
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑌 ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) |
327 |
109 326
|
eqeltrid |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑟 ) +no ( bday ‘ 0s ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) |
328 |
296 305 324 299 327
|
addsproplem1 |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( ( 𝑟 +s 𝑌 ) ∈ No ∧ ( 𝑌 <s 0s → ( 𝑌 +s 𝑟 ) <s ( 0s +s 𝑟 ) ) ) ) |
329 |
328
|
simpld |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( 𝑟 +s 𝑌 ) ∈ No ) |
330 |
|
rightval |
⊢ ( R ‘ 𝑋 ) = { 𝑟 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∣ 𝑋 <s 𝑟 } |
331 |
330
|
eleq2i |
⊢ ( 𝑟 ∈ ( R ‘ 𝑋 ) ↔ 𝑟 ∈ { 𝑟 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∣ 𝑋 <s 𝑟 } ) |
332 |
331
|
biimpi |
⊢ ( 𝑟 ∈ ( R ‘ 𝑋 ) → 𝑟 ∈ { 𝑟 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∣ 𝑋 <s 𝑟 } ) |
333 |
332
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → 𝑟 ∈ { 𝑟 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∣ 𝑋 <s 𝑟 } ) |
334 |
|
rabid |
⊢ ( 𝑟 ∈ { 𝑟 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∣ 𝑋 <s 𝑟 } ↔ ( 𝑟 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝑋 <s 𝑟 ) ) |
335 |
333 334
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( 𝑟 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝑋 <s 𝑟 ) ) |
336 |
335
|
simprd |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → 𝑋 <s 𝑟 ) |
337 |
|
naddcom |
⊢ ( ( ( bday ‘ 𝑚 ) ∈ On ∧ ( bday ‘ 𝑋 ) ∈ On ) → ( ( bday ‘ 𝑚 ) +no ( bday ‘ 𝑋 ) ) = ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ) |
338 |
68 40 337
|
mp2an |
⊢ ( ( bday ‘ 𝑚 ) +no ( bday ‘ 𝑋 ) ) = ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) |
339 |
338 300
|
eqeltrid |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( ( bday ‘ 𝑚 ) +no ( bday ‘ 𝑋 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
340 |
|
naddcom |
⊢ ( ( ( bday ‘ 𝑚 ) ∈ On ∧ ( bday ‘ 𝑟 ) ∈ On ) → ( ( bday ‘ 𝑚 ) +no ( bday ‘ 𝑟 ) ) = ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑚 ) ) ) |
341 |
68 100 340
|
mp2an |
⊢ ( ( bday ‘ 𝑚 ) +no ( bday ‘ 𝑟 ) ) = ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑚 ) ) |
342 |
341 318
|
eqeltrid |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( ( bday ‘ 𝑚 ) +no ( bday ‘ 𝑟 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
343 |
|
naddcl |
⊢ ( ( ( bday ‘ 𝑚 ) ∈ On ∧ ( bday ‘ 𝑋 ) ∈ On ) → ( ( bday ‘ 𝑚 ) +no ( bday ‘ 𝑋 ) ) ∈ On ) |
344 |
68 40 343
|
mp2an |
⊢ ( ( bday ‘ 𝑚 ) +no ( bday ‘ 𝑋 ) ) ∈ On |
345 |
|
naddcl |
⊢ ( ( ( bday ‘ 𝑚 ) ∈ On ∧ ( bday ‘ 𝑟 ) ∈ On ) → ( ( bday ‘ 𝑚 ) +no ( bday ‘ 𝑟 ) ) ∈ On ) |
346 |
68 100 345
|
mp2an |
⊢ ( ( bday ‘ 𝑚 ) +no ( bday ‘ 𝑟 ) ) ∈ On |
347 |
|
onunel |
⊢ ( ( ( ( bday ‘ 𝑚 ) +no ( bday ‘ 𝑋 ) ) ∈ On ∧ ( ( bday ‘ 𝑚 ) +no ( bday ‘ 𝑟 ) ) ∈ On ∧ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∈ On ) → ( ( ( ( bday ‘ 𝑚 ) +no ( bday ‘ 𝑋 ) ) ∪ ( ( bday ‘ 𝑚 ) +no ( bday ‘ 𝑟 ) ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ↔ ( ( ( bday ‘ 𝑚 ) +no ( bday ‘ 𝑋 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∧ ( ( bday ‘ 𝑚 ) +no ( bday ‘ 𝑟 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) ) ) |
348 |
344 346 206 347
|
mp3an |
⊢ ( ( ( ( bday ‘ 𝑚 ) +no ( bday ‘ 𝑋 ) ) ∪ ( ( bday ‘ 𝑚 ) +no ( bday ‘ 𝑟 ) ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ↔ ( ( ( bday ‘ 𝑚 ) +no ( bday ‘ 𝑋 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∧ ( ( bday ‘ 𝑚 ) +no ( bday ‘ 𝑟 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) ) |
349 |
339 342 348
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( ( ( bday ‘ 𝑚 ) +no ( bday ‘ 𝑋 ) ) ∪ ( ( bday ‘ 𝑚 ) +no ( bday ‘ 𝑟 ) ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
350 |
|
elun1 |
⊢ ( ( ( ( bday ‘ 𝑚 ) +no ( bday ‘ 𝑋 ) ) ∪ ( ( bday ‘ 𝑚 ) +no ( bday ‘ 𝑟 ) ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) → ( ( ( bday ‘ 𝑚 ) +no ( bday ‘ 𝑋 ) ) ∪ ( ( bday ‘ 𝑚 ) +no ( bday ‘ 𝑟 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) |
351 |
349 350
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( ( ( bday ‘ 𝑚 ) +no ( bday ‘ 𝑋 ) ) ∪ ( ( bday ‘ 𝑚 ) +no ( bday ‘ 𝑟 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) |
352 |
296 298 297 305 351
|
addsproplem1 |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( ( 𝑚 +s 𝑋 ) ∈ No ∧ ( 𝑋 <s 𝑟 → ( 𝑋 +s 𝑚 ) <s ( 𝑟 +s 𝑚 ) ) ) ) |
353 |
352
|
simprd |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( 𝑋 <s 𝑟 → ( 𝑋 +s 𝑚 ) <s ( 𝑟 +s 𝑚 ) ) ) |
354 |
336 353
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( 𝑋 +s 𝑚 ) <s ( 𝑟 +s 𝑚 ) ) |
355 |
|
leftval |
⊢ ( L ‘ 𝑌 ) = { 𝑚 ∈ ( O ‘ ( bday ‘ 𝑌 ) ) ∣ 𝑚 <s 𝑌 } |
356 |
355
|
eleq2i |
⊢ ( 𝑚 ∈ ( L ‘ 𝑌 ) ↔ 𝑚 ∈ { 𝑚 ∈ ( O ‘ ( bday ‘ 𝑌 ) ) ∣ 𝑚 <s 𝑌 } ) |
357 |
356
|
biimpi |
⊢ ( 𝑚 ∈ ( L ‘ 𝑌 ) → 𝑚 ∈ { 𝑚 ∈ ( O ‘ ( bday ‘ 𝑌 ) ) ∣ 𝑚 <s 𝑌 } ) |
358 |
357
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → 𝑚 ∈ { 𝑚 ∈ ( O ‘ ( bday ‘ 𝑌 ) ) ∣ 𝑚 <s 𝑌 } ) |
359 |
|
rabid |
⊢ ( 𝑚 ∈ { 𝑚 ∈ ( O ‘ ( bday ‘ 𝑌 ) ) ∣ 𝑚 <s 𝑌 } ↔ ( 𝑚 ∈ ( O ‘ ( bday ‘ 𝑌 ) ) ∧ 𝑚 <s 𝑌 ) ) |
360 |
358 359
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( 𝑚 ∈ ( O ‘ ( bday ‘ 𝑌 ) ) ∧ 𝑚 <s 𝑌 ) ) |
361 |
360
|
simprd |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → 𝑚 <s 𝑌 ) |
362 |
|
naddcl |
⊢ ( ( ( bday ‘ 𝑟 ) ∈ On ∧ ( bday ‘ 𝑚 ) ∈ On ) → ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑚 ) ) ∈ On ) |
363 |
100 68 362
|
mp2an |
⊢ ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑚 ) ) ∈ On |
364 |
|
naddcl |
⊢ ( ( ( bday ‘ 𝑟 ) ∈ On ∧ ( bday ‘ 𝑌 ) ∈ On ) → ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑌 ) ) ∈ On ) |
365 |
100 32 364
|
mp2an |
⊢ ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑌 ) ) ∈ On |
366 |
|
onunel |
⊢ ( ( ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑚 ) ) ∈ On ∧ ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑌 ) ) ∈ On ∧ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∈ On ) → ( ( ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑚 ) ) ∪ ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑌 ) ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ↔ ( ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑚 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∧ ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑌 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) ) ) |
367 |
363 365 206 366
|
mp3an |
⊢ ( ( ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑚 ) ) ∪ ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑌 ) ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ↔ ( ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑚 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∧ ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑌 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) ) |
368 |
318 325 367
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑚 ) ) ∪ ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑌 ) ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
369 |
|
elun1 |
⊢ ( ( ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑚 ) ) ∪ ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑌 ) ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) → ( ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑚 ) ) ∪ ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑌 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) |
370 |
368 369
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑚 ) ) ∪ ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑌 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) |
371 |
296 305 298 324 370
|
addsproplem1 |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( ( 𝑟 +s 𝑚 ) ∈ No ∧ ( 𝑚 <s 𝑌 → ( 𝑚 +s 𝑟 ) <s ( 𝑌 +s 𝑟 ) ) ) ) |
372 |
371
|
simprd |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( 𝑚 <s 𝑌 → ( 𝑚 +s 𝑟 ) <s ( 𝑌 +s 𝑟 ) ) ) |
373 |
361 372
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( 𝑚 +s 𝑟 ) <s ( 𝑌 +s 𝑟 ) ) |
374 |
305 298
|
addscomd |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( 𝑟 +s 𝑚 ) = ( 𝑚 +s 𝑟 ) ) |
375 |
305 324
|
addscomd |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( 𝑟 +s 𝑌 ) = ( 𝑌 +s 𝑟 ) ) |
376 |
373 374 375
|
3brtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( 𝑟 +s 𝑚 ) <s ( 𝑟 +s 𝑌 ) ) |
377 |
304 323 329 354 376
|
slttrd |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( 𝑋 +s 𝑚 ) <s ( 𝑟 +s 𝑌 ) ) |
378 |
|
breq12 |
⊢ ( ( 𝑎 = ( 𝑋 +s 𝑚 ) ∧ 𝑏 = ( 𝑟 +s 𝑌 ) ) → ( 𝑎 <s 𝑏 ↔ ( 𝑋 +s 𝑚 ) <s ( 𝑟 +s 𝑌 ) ) ) |
379 |
377 378
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( ( 𝑎 = ( 𝑋 +s 𝑚 ) ∧ 𝑏 = ( 𝑟 +s 𝑌 ) ) → 𝑎 <s 𝑏 ) ) |
380 |
379
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑚 ∈ ( L ‘ 𝑌 ) ∃ 𝑟 ∈ ( R ‘ 𝑋 ) ( 𝑎 = ( 𝑋 +s 𝑚 ) ∧ 𝑏 = ( 𝑟 +s 𝑌 ) ) → 𝑎 <s 𝑏 ) ) |
381 |
295 380
|
biimtrrid |
⊢ ( 𝜑 → ( ( ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑎 = ( 𝑋 +s 𝑚 ) ∧ ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑏 = ( 𝑟 +s 𝑌 ) ) → 𝑎 <s 𝑏 ) ) |
382 |
|
reeanv |
⊢ ( ∃ 𝑚 ∈ ( L ‘ 𝑌 ) ∃ 𝑠 ∈ ( R ‘ 𝑌 ) ( 𝑎 = ( 𝑋 +s 𝑚 ) ∧ 𝑏 = ( 𝑋 +s 𝑠 ) ) ↔ ( ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑎 = ( 𝑋 +s 𝑚 ) ∧ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑏 = ( 𝑋 +s 𝑠 ) ) ) |
383 |
|
lltropt |
⊢ ( L ‘ 𝑌 ) <<s ( R ‘ 𝑌 ) |
384 |
383
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( L ‘ 𝑌 ) <<s ( R ‘ 𝑌 ) ) |
385 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → 𝑚 ∈ ( L ‘ 𝑌 ) ) |
386 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → 𝑠 ∈ ( R ‘ 𝑌 ) ) |
387 |
384 385 386
|
ssltsepcd |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → 𝑚 <s 𝑠 ) |
388 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ∀ 𝑧 ∈ No ( ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) ) |
389 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → 𝑋 ∈ No ) |
390 |
60
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → 𝑚 ∈ No ) |
391 |
131
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → 𝑠 ∈ No ) |
392 |
81
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
393 |
148
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
394 |
|
naddcl |
⊢ ( ( ( bday ‘ 𝑋 ) ∈ On ∧ ( bday ‘ 𝑚 ) ∈ On ) → ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ∈ On ) |
395 |
40 68 394
|
mp2an |
⊢ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ∈ On |
396 |
|
naddcl |
⊢ ( ( ( bday ‘ 𝑋 ) ∈ On ∧ ( bday ‘ 𝑠 ) ∈ On ) → ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) ∈ On ) |
397 |
40 135 396
|
mp2an |
⊢ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) ∈ On |
398 |
|
onunel |
⊢ ( ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ∈ On ∧ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) ∈ On ∧ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∈ On ) → ( ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ↔ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∧ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) ) ) |
399 |
395 397 206 398
|
mp3an |
⊢ ( ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ↔ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∧ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) ) |
400 |
392 393 399
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
401 |
|
elun1 |
⊢ ( ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) → ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) |
402 |
400 401
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) |
403 |
388 389 390 391 402
|
addsproplem1 |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( ( 𝑋 +s 𝑚 ) ∈ No ∧ ( 𝑚 <s 𝑠 → ( 𝑚 +s 𝑋 ) <s ( 𝑠 +s 𝑋 ) ) ) ) |
404 |
403
|
simprd |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( 𝑚 <s 𝑠 → ( 𝑚 +s 𝑋 ) <s ( 𝑠 +s 𝑋 ) ) ) |
405 |
387 404
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( 𝑚 +s 𝑋 ) <s ( 𝑠 +s 𝑋 ) ) |
406 |
389 390
|
addscomd |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( 𝑋 +s 𝑚 ) = ( 𝑚 +s 𝑋 ) ) |
407 |
389 391
|
addscomd |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( 𝑋 +s 𝑠 ) = ( 𝑠 +s 𝑋 ) ) |
408 |
405 406 407
|
3brtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( 𝑋 +s 𝑚 ) <s ( 𝑋 +s 𝑠 ) ) |
409 |
|
breq12 |
⊢ ( ( 𝑎 = ( 𝑋 +s 𝑚 ) ∧ 𝑏 = ( 𝑋 +s 𝑠 ) ) → ( 𝑎 <s 𝑏 ↔ ( 𝑋 +s 𝑚 ) <s ( 𝑋 +s 𝑠 ) ) ) |
410 |
408 409
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( ( 𝑎 = ( 𝑋 +s 𝑚 ) ∧ 𝑏 = ( 𝑋 +s 𝑠 ) ) → 𝑎 <s 𝑏 ) ) |
411 |
410
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑚 ∈ ( L ‘ 𝑌 ) ∃ 𝑠 ∈ ( R ‘ 𝑌 ) ( 𝑎 = ( 𝑋 +s 𝑚 ) ∧ 𝑏 = ( 𝑋 +s 𝑠 ) ) → 𝑎 <s 𝑏 ) ) |
412 |
382 411
|
biimtrrid |
⊢ ( 𝜑 → ( ( ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑎 = ( 𝑋 +s 𝑚 ) ∧ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑏 = ( 𝑋 +s 𝑠 ) ) → 𝑎 <s 𝑏 ) ) |
413 |
381 412
|
jaod |
⊢ ( 𝜑 → ( ( ( ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑎 = ( 𝑋 +s 𝑚 ) ∧ ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑏 = ( 𝑟 +s 𝑌 ) ) ∨ ( ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑎 = ( 𝑋 +s 𝑚 ) ∧ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑏 = ( 𝑋 +s 𝑠 ) ) ) → 𝑎 <s 𝑏 ) ) |
414 |
294 413
|
jaod |
⊢ ( 𝜑 → ( ( ( ( ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑎 = ( 𝑙 +s 𝑌 ) ∧ ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑏 = ( 𝑟 +s 𝑌 ) ) ∨ ( ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑎 = ( 𝑙 +s 𝑌 ) ∧ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑏 = ( 𝑋 +s 𝑠 ) ) ) ∨ ( ( ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑎 = ( 𝑋 +s 𝑚 ) ∧ ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑏 = ( 𝑟 +s 𝑌 ) ) ∨ ( ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑎 = ( 𝑋 +s 𝑚 ) ∧ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑏 = ( 𝑋 +s 𝑠 ) ) ) ) → 𝑎 <s 𝑏 ) ) |
415 |
182 414
|
biimtrid |
⊢ ( 𝜑 → ( ( 𝑎 ∈ ( { 𝑝 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑝 = ( 𝑙 +s 𝑌 ) } ∪ { 𝑞 ∣ ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑞 = ( 𝑋 +s 𝑚 ) } ) ∧ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑤 = ( 𝑟 +s 𝑌 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑡 = ( 𝑋 +s 𝑠 ) } ) ) → 𝑎 <s 𝑏 ) ) |
416 |
415
|
3impib |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( { 𝑝 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑝 = ( 𝑙 +s 𝑌 ) } ∪ { 𝑞 ∣ ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑞 = ( 𝑋 +s 𝑚 ) } ) ∧ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑤 = ( 𝑟 +s 𝑌 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑡 = ( 𝑋 +s 𝑠 ) } ) ) → 𝑎 <s 𝑏 ) |
417 |
10 17 92 159 416
|
ssltd |
⊢ ( 𝜑 → ( { 𝑝 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑝 = ( 𝑙 +s 𝑌 ) } ∪ { 𝑞 ∣ ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑞 = ( 𝑋 +s 𝑚 ) } ) <<s ( { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑤 = ( 𝑟 +s 𝑌 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑡 = ( 𝑋 +s 𝑠 ) } ) ) |