| Step |
Hyp |
Ref |
Expression |
| 1 |
|
addsproplem.1 |
⊢ ( 𝜑 → ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ∀ 𝑧 ∈ No ( ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) ) |
| 2 |
|
addsproplem2.2 |
⊢ ( 𝜑 → 𝑋 ∈ No ) |
| 3 |
|
addsproplem2.3 |
⊢ ( 𝜑 → 𝑌 ∈ No ) |
| 4 |
|
fvex |
⊢ ( L ‘ 𝑋 ) ∈ V |
| 5 |
4
|
abrexex |
⊢ { 𝑝 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑝 = ( 𝑙 +s 𝑌 ) } ∈ V |
| 6 |
5
|
a1i |
⊢ ( 𝜑 → { 𝑝 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑝 = ( 𝑙 +s 𝑌 ) } ∈ V ) |
| 7 |
|
fvex |
⊢ ( L ‘ 𝑌 ) ∈ V |
| 8 |
7
|
abrexex |
⊢ { 𝑞 ∣ ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑞 = ( 𝑋 +s 𝑚 ) } ∈ V |
| 9 |
8
|
a1i |
⊢ ( 𝜑 → { 𝑞 ∣ ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑞 = ( 𝑋 +s 𝑚 ) } ∈ V ) |
| 10 |
6 9
|
unexd |
⊢ ( 𝜑 → ( { 𝑝 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑝 = ( 𝑙 +s 𝑌 ) } ∪ { 𝑞 ∣ ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑞 = ( 𝑋 +s 𝑚 ) } ) ∈ V ) |
| 11 |
|
fvex |
⊢ ( R ‘ 𝑋 ) ∈ V |
| 12 |
11
|
abrexex |
⊢ { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑤 = ( 𝑟 +s 𝑌 ) } ∈ V |
| 13 |
12
|
a1i |
⊢ ( 𝜑 → { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑤 = ( 𝑟 +s 𝑌 ) } ∈ V ) |
| 14 |
|
fvex |
⊢ ( R ‘ 𝑌 ) ∈ V |
| 15 |
14
|
abrexex |
⊢ { 𝑡 ∣ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑡 = ( 𝑋 +s 𝑠 ) } ∈ V |
| 16 |
15
|
a1i |
⊢ ( 𝜑 → { 𝑡 ∣ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑡 = ( 𝑋 +s 𝑠 ) } ∈ V ) |
| 17 |
13 16
|
unexd |
⊢ ( 𝜑 → ( { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑤 = ( 𝑟 +s 𝑌 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑡 = ( 𝑋 +s 𝑠 ) } ) ∈ V ) |
| 18 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ( L ‘ 𝑋 ) ) → ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ∀ 𝑧 ∈ No ( ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) ) |
| 19 |
|
leftssno |
⊢ ( L ‘ 𝑋 ) ⊆ No |
| 20 |
19
|
sseli |
⊢ ( 𝑙 ∈ ( L ‘ 𝑋 ) → 𝑙 ∈ No ) |
| 21 |
20
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ( L ‘ 𝑋 ) ) → 𝑙 ∈ No ) |
| 22 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ( L ‘ 𝑋 ) ) → 𝑌 ∈ No ) |
| 23 |
|
0sno |
⊢ 0s ∈ No |
| 24 |
23
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ( L ‘ 𝑋 ) ) → 0s ∈ No ) |
| 25 |
|
bday0s |
⊢ ( bday ‘ 0s ) = ∅ |
| 26 |
25
|
oveq2i |
⊢ ( ( bday ‘ 𝑙 ) +no ( bday ‘ 0s ) ) = ( ( bday ‘ 𝑙 ) +no ∅ ) |
| 27 |
|
bdayelon |
⊢ ( bday ‘ 𝑙 ) ∈ On |
| 28 |
|
naddrid |
⊢ ( ( bday ‘ 𝑙 ) ∈ On → ( ( bday ‘ 𝑙 ) +no ∅ ) = ( bday ‘ 𝑙 ) ) |
| 29 |
27 28
|
ax-mp |
⊢ ( ( bday ‘ 𝑙 ) +no ∅ ) = ( bday ‘ 𝑙 ) |
| 30 |
26 29
|
eqtri |
⊢ ( ( bday ‘ 𝑙 ) +no ( bday ‘ 0s ) ) = ( bday ‘ 𝑙 ) |
| 31 |
30
|
uneq2i |
⊢ ( ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑙 ) +no ( bday ‘ 0s ) ) ) = ( ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑌 ) ) ∪ ( bday ‘ 𝑙 ) ) |
| 32 |
|
bdayelon |
⊢ ( bday ‘ 𝑌 ) ∈ On |
| 33 |
|
naddword1 |
⊢ ( ( ( bday ‘ 𝑙 ) ∈ On ∧ ( bday ‘ 𝑌 ) ∈ On ) → ( bday ‘ 𝑙 ) ⊆ ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑌 ) ) ) |
| 34 |
27 32 33
|
mp2an |
⊢ ( bday ‘ 𝑙 ) ⊆ ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑌 ) ) |
| 35 |
|
ssequn2 |
⊢ ( ( bday ‘ 𝑙 ) ⊆ ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑌 ) ) ↔ ( ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑌 ) ) ∪ ( bday ‘ 𝑙 ) ) = ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑌 ) ) ) |
| 36 |
34 35
|
mpbi |
⊢ ( ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑌 ) ) ∪ ( bday ‘ 𝑙 ) ) = ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑌 ) ) |
| 37 |
31 36
|
eqtri |
⊢ ( ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑙 ) +no ( bday ‘ 0s ) ) ) = ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑌 ) ) |
| 38 |
|
leftssold |
⊢ ( L ‘ 𝑋 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) |
| 39 |
38
|
sseli |
⊢ ( 𝑙 ∈ ( L ‘ 𝑋 ) → 𝑙 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ) |
| 40 |
|
bdayelon |
⊢ ( bday ‘ 𝑋 ) ∈ On |
| 41 |
|
oldbday |
⊢ ( ( ( bday ‘ 𝑋 ) ∈ On ∧ 𝑙 ∈ No ) → ( 𝑙 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ↔ ( bday ‘ 𝑙 ) ∈ ( bday ‘ 𝑋 ) ) ) |
| 42 |
40 20 41
|
sylancr |
⊢ ( 𝑙 ∈ ( L ‘ 𝑋 ) → ( 𝑙 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ↔ ( bday ‘ 𝑙 ) ∈ ( bday ‘ 𝑋 ) ) ) |
| 43 |
39 42
|
mpbid |
⊢ ( 𝑙 ∈ ( L ‘ 𝑋 ) → ( bday ‘ 𝑙 ) ∈ ( bday ‘ 𝑋 ) ) |
| 44 |
|
naddel1 |
⊢ ( ( ( bday ‘ 𝑙 ) ∈ On ∧ ( bday ‘ 𝑋 ) ∈ On ∧ ( bday ‘ 𝑌 ) ∈ On ) → ( ( bday ‘ 𝑙 ) ∈ ( bday ‘ 𝑋 ) ↔ ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑌 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) ) |
| 45 |
27 40 32 44
|
mp3an |
⊢ ( ( bday ‘ 𝑙 ) ∈ ( bday ‘ 𝑋 ) ↔ ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑌 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
| 46 |
43 45
|
sylib |
⊢ ( 𝑙 ∈ ( L ‘ 𝑋 ) → ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑌 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
| 47 |
46
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ( L ‘ 𝑋 ) ) → ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑌 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
| 48 |
|
elun1 |
⊢ ( ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑌 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) → ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑌 ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) |
| 49 |
47 48
|
syl |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ( L ‘ 𝑋 ) ) → ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑌 ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) |
| 50 |
37 49
|
eqeltrid |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ( L ‘ 𝑋 ) ) → ( ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑙 ) +no ( bday ‘ 0s ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) |
| 51 |
18 21 22 24 50
|
addsproplem1 |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ( L ‘ 𝑋 ) ) → ( ( 𝑙 +s 𝑌 ) ∈ No ∧ ( 𝑌 <s 0s → ( 𝑌 +s 𝑙 ) <s ( 0s +s 𝑙 ) ) ) ) |
| 52 |
51
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ( L ‘ 𝑋 ) ) → ( 𝑙 +s 𝑌 ) ∈ No ) |
| 53 |
|
eleq1a |
⊢ ( ( 𝑙 +s 𝑌 ) ∈ No → ( 𝑝 = ( 𝑙 +s 𝑌 ) → 𝑝 ∈ No ) ) |
| 54 |
52 53
|
syl |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ( L ‘ 𝑋 ) ) → ( 𝑝 = ( 𝑙 +s 𝑌 ) → 𝑝 ∈ No ) ) |
| 55 |
54
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑝 = ( 𝑙 +s 𝑌 ) → 𝑝 ∈ No ) ) |
| 56 |
55
|
abssdv |
⊢ ( 𝜑 → { 𝑝 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑝 = ( 𝑙 +s 𝑌 ) } ⊆ No ) |
| 57 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( L ‘ 𝑌 ) ) → ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ∀ 𝑧 ∈ No ( ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) ) |
| 58 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( L ‘ 𝑌 ) ) → 𝑋 ∈ No ) |
| 59 |
|
leftssno |
⊢ ( L ‘ 𝑌 ) ⊆ No |
| 60 |
59
|
sseli |
⊢ ( 𝑚 ∈ ( L ‘ 𝑌 ) → 𝑚 ∈ No ) |
| 61 |
60
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( L ‘ 𝑌 ) ) → 𝑚 ∈ No ) |
| 62 |
23
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( L ‘ 𝑌 ) ) → 0s ∈ No ) |
| 63 |
25
|
oveq2i |
⊢ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 0s ) ) = ( ( bday ‘ 𝑋 ) +no ∅ ) |
| 64 |
|
naddrid |
⊢ ( ( bday ‘ 𝑋 ) ∈ On → ( ( bday ‘ 𝑋 ) +no ∅ ) = ( bday ‘ 𝑋 ) ) |
| 65 |
40 64
|
ax-mp |
⊢ ( ( bday ‘ 𝑋 ) +no ∅ ) = ( bday ‘ 𝑋 ) |
| 66 |
63 65
|
eqtri |
⊢ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 0s ) ) = ( bday ‘ 𝑋 ) |
| 67 |
66
|
uneq2i |
⊢ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 0s ) ) ) = ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ∪ ( bday ‘ 𝑋 ) ) |
| 68 |
|
bdayelon |
⊢ ( bday ‘ 𝑚 ) ∈ On |
| 69 |
|
naddword1 |
⊢ ( ( ( bday ‘ 𝑋 ) ∈ On ∧ ( bday ‘ 𝑚 ) ∈ On ) → ( bday ‘ 𝑋 ) ⊆ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ) |
| 70 |
40 68 69
|
mp2an |
⊢ ( bday ‘ 𝑋 ) ⊆ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) |
| 71 |
|
ssequn2 |
⊢ ( ( bday ‘ 𝑋 ) ⊆ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ↔ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ∪ ( bday ‘ 𝑋 ) ) = ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ) |
| 72 |
70 71
|
mpbi |
⊢ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ∪ ( bday ‘ 𝑋 ) ) = ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) |
| 73 |
67 72
|
eqtri |
⊢ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 0s ) ) ) = ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) |
| 74 |
|
leftssold |
⊢ ( L ‘ 𝑌 ) ⊆ ( O ‘ ( bday ‘ 𝑌 ) ) |
| 75 |
74
|
sseli |
⊢ ( 𝑚 ∈ ( L ‘ 𝑌 ) → 𝑚 ∈ ( O ‘ ( bday ‘ 𝑌 ) ) ) |
| 76 |
|
oldbday |
⊢ ( ( ( bday ‘ 𝑌 ) ∈ On ∧ 𝑚 ∈ No ) → ( 𝑚 ∈ ( O ‘ ( bday ‘ 𝑌 ) ) ↔ ( bday ‘ 𝑚 ) ∈ ( bday ‘ 𝑌 ) ) ) |
| 77 |
32 60 76
|
sylancr |
⊢ ( 𝑚 ∈ ( L ‘ 𝑌 ) → ( 𝑚 ∈ ( O ‘ ( bday ‘ 𝑌 ) ) ↔ ( bday ‘ 𝑚 ) ∈ ( bday ‘ 𝑌 ) ) ) |
| 78 |
75 77
|
mpbid |
⊢ ( 𝑚 ∈ ( L ‘ 𝑌 ) → ( bday ‘ 𝑚 ) ∈ ( bday ‘ 𝑌 ) ) |
| 79 |
|
naddel2 |
⊢ ( ( ( bday ‘ 𝑚 ) ∈ On ∧ ( bday ‘ 𝑌 ) ∈ On ∧ ( bday ‘ 𝑋 ) ∈ On ) → ( ( bday ‘ 𝑚 ) ∈ ( bday ‘ 𝑌 ) ↔ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) ) |
| 80 |
68 32 40 79
|
mp3an |
⊢ ( ( bday ‘ 𝑚 ) ∈ ( bday ‘ 𝑌 ) ↔ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
| 81 |
78 80
|
sylib |
⊢ ( 𝑚 ∈ ( L ‘ 𝑌 ) → ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
| 82 |
81
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( L ‘ 𝑌 ) ) → ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
| 83 |
|
elun1 |
⊢ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) → ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) |
| 84 |
82 83
|
syl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( L ‘ 𝑌 ) ) → ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) |
| 85 |
73 84
|
eqeltrid |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( L ‘ 𝑌 ) ) → ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 0s ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) |
| 86 |
57 58 61 62 85
|
addsproplem1 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( L ‘ 𝑌 ) ) → ( ( 𝑋 +s 𝑚 ) ∈ No ∧ ( 𝑚 <s 0s → ( 𝑚 +s 𝑋 ) <s ( 0s +s 𝑋 ) ) ) ) |
| 87 |
86
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( L ‘ 𝑌 ) ) → ( 𝑋 +s 𝑚 ) ∈ No ) |
| 88 |
|
eleq1a |
⊢ ( ( 𝑋 +s 𝑚 ) ∈ No → ( 𝑞 = ( 𝑋 +s 𝑚 ) → 𝑞 ∈ No ) ) |
| 89 |
87 88
|
syl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( L ‘ 𝑌 ) ) → ( 𝑞 = ( 𝑋 +s 𝑚 ) → 𝑞 ∈ No ) ) |
| 90 |
89
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑞 = ( 𝑋 +s 𝑚 ) → 𝑞 ∈ No ) ) |
| 91 |
90
|
abssdv |
⊢ ( 𝜑 → { 𝑞 ∣ ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑞 = ( 𝑋 +s 𝑚 ) } ⊆ No ) |
| 92 |
56 91
|
unssd |
⊢ ( 𝜑 → ( { 𝑝 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑝 = ( 𝑙 +s 𝑌 ) } ∪ { 𝑞 ∣ ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑞 = ( 𝑋 +s 𝑚 ) } ) ⊆ No ) |
| 93 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) → ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ∀ 𝑧 ∈ No ( ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) ) |
| 94 |
|
rightssno |
⊢ ( R ‘ 𝑋 ) ⊆ No |
| 95 |
94
|
sseli |
⊢ ( 𝑟 ∈ ( R ‘ 𝑋 ) → 𝑟 ∈ No ) |
| 96 |
95
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) → 𝑟 ∈ No ) |
| 97 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) → 𝑌 ∈ No ) |
| 98 |
23
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) → 0s ∈ No ) |
| 99 |
25
|
oveq2i |
⊢ ( ( bday ‘ 𝑟 ) +no ( bday ‘ 0s ) ) = ( ( bday ‘ 𝑟 ) +no ∅ ) |
| 100 |
|
bdayelon |
⊢ ( bday ‘ 𝑟 ) ∈ On |
| 101 |
|
naddrid |
⊢ ( ( bday ‘ 𝑟 ) ∈ On → ( ( bday ‘ 𝑟 ) +no ∅ ) = ( bday ‘ 𝑟 ) ) |
| 102 |
100 101
|
ax-mp |
⊢ ( ( bday ‘ 𝑟 ) +no ∅ ) = ( bday ‘ 𝑟 ) |
| 103 |
99 102
|
eqtri |
⊢ ( ( bday ‘ 𝑟 ) +no ( bday ‘ 0s ) ) = ( bday ‘ 𝑟 ) |
| 104 |
103
|
uneq2i |
⊢ ( ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑟 ) +no ( bday ‘ 0s ) ) ) = ( ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑌 ) ) ∪ ( bday ‘ 𝑟 ) ) |
| 105 |
|
naddword1 |
⊢ ( ( ( bday ‘ 𝑟 ) ∈ On ∧ ( bday ‘ 𝑌 ) ∈ On ) → ( bday ‘ 𝑟 ) ⊆ ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑌 ) ) ) |
| 106 |
100 32 105
|
mp2an |
⊢ ( bday ‘ 𝑟 ) ⊆ ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑌 ) ) |
| 107 |
|
ssequn2 |
⊢ ( ( bday ‘ 𝑟 ) ⊆ ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑌 ) ) ↔ ( ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑌 ) ) ∪ ( bday ‘ 𝑟 ) ) = ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑌 ) ) ) |
| 108 |
106 107
|
mpbi |
⊢ ( ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑌 ) ) ∪ ( bday ‘ 𝑟 ) ) = ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑌 ) ) |
| 109 |
104 108
|
eqtri |
⊢ ( ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑟 ) +no ( bday ‘ 0s ) ) ) = ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑌 ) ) |
| 110 |
|
rightssold |
⊢ ( R ‘ 𝑋 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) |
| 111 |
110
|
sseli |
⊢ ( 𝑟 ∈ ( R ‘ 𝑋 ) → 𝑟 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ) |
| 112 |
|
oldbday |
⊢ ( ( ( bday ‘ 𝑋 ) ∈ On ∧ 𝑟 ∈ No ) → ( 𝑟 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ↔ ( bday ‘ 𝑟 ) ∈ ( bday ‘ 𝑋 ) ) ) |
| 113 |
40 95 112
|
sylancr |
⊢ ( 𝑟 ∈ ( R ‘ 𝑋 ) → ( 𝑟 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ↔ ( bday ‘ 𝑟 ) ∈ ( bday ‘ 𝑋 ) ) ) |
| 114 |
111 113
|
mpbid |
⊢ ( 𝑟 ∈ ( R ‘ 𝑋 ) → ( bday ‘ 𝑟 ) ∈ ( bday ‘ 𝑋 ) ) |
| 115 |
|
naddel1 |
⊢ ( ( ( bday ‘ 𝑟 ) ∈ On ∧ ( bday ‘ 𝑋 ) ∈ On ∧ ( bday ‘ 𝑌 ) ∈ On ) → ( ( bday ‘ 𝑟 ) ∈ ( bday ‘ 𝑋 ) ↔ ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑌 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) ) |
| 116 |
100 40 32 115
|
mp3an |
⊢ ( ( bday ‘ 𝑟 ) ∈ ( bday ‘ 𝑋 ) ↔ ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑌 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
| 117 |
114 116
|
sylib |
⊢ ( 𝑟 ∈ ( R ‘ 𝑋 ) → ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑌 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
| 118 |
117
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) → ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑌 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
| 119 |
|
elun1 |
⊢ ( ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑌 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) → ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑌 ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) |
| 120 |
118 119
|
syl |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) → ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑌 ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) |
| 121 |
109 120
|
eqeltrid |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) → ( ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑟 ) +no ( bday ‘ 0s ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) |
| 122 |
93 96 97 98 121
|
addsproplem1 |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) → ( ( 𝑟 +s 𝑌 ) ∈ No ∧ ( 𝑌 <s 0s → ( 𝑌 +s 𝑟 ) <s ( 0s +s 𝑟 ) ) ) ) |
| 123 |
122
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) → ( 𝑟 +s 𝑌 ) ∈ No ) |
| 124 |
|
eleq1a |
⊢ ( ( 𝑟 +s 𝑌 ) ∈ No → ( 𝑤 = ( 𝑟 +s 𝑌 ) → 𝑤 ∈ No ) ) |
| 125 |
123 124
|
syl |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) → ( 𝑤 = ( 𝑟 +s 𝑌 ) → 𝑤 ∈ No ) ) |
| 126 |
125
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑤 = ( 𝑟 +s 𝑌 ) → 𝑤 ∈ No ) ) |
| 127 |
126
|
abssdv |
⊢ ( 𝜑 → { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑤 = ( 𝑟 +s 𝑌 ) } ⊆ No ) |
| 128 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) → ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ∀ 𝑧 ∈ No ( ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) ) |
| 129 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) → 𝑋 ∈ No ) |
| 130 |
|
rightssno |
⊢ ( R ‘ 𝑌 ) ⊆ No |
| 131 |
130
|
sseli |
⊢ ( 𝑠 ∈ ( R ‘ 𝑌 ) → 𝑠 ∈ No ) |
| 132 |
131
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) → 𝑠 ∈ No ) |
| 133 |
23
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) → 0s ∈ No ) |
| 134 |
66
|
uneq2i |
⊢ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 0s ) ) ) = ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) ∪ ( bday ‘ 𝑋 ) ) |
| 135 |
|
bdayelon |
⊢ ( bday ‘ 𝑠 ) ∈ On |
| 136 |
|
naddword1 |
⊢ ( ( ( bday ‘ 𝑋 ) ∈ On ∧ ( bday ‘ 𝑠 ) ∈ On ) → ( bday ‘ 𝑋 ) ⊆ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) ) |
| 137 |
40 135 136
|
mp2an |
⊢ ( bday ‘ 𝑋 ) ⊆ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) |
| 138 |
|
ssequn2 |
⊢ ( ( bday ‘ 𝑋 ) ⊆ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) ↔ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) ∪ ( bday ‘ 𝑋 ) ) = ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) ) |
| 139 |
137 138
|
mpbi |
⊢ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) ∪ ( bday ‘ 𝑋 ) ) = ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) |
| 140 |
134 139
|
eqtri |
⊢ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 0s ) ) ) = ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) |
| 141 |
|
rightssold |
⊢ ( R ‘ 𝑌 ) ⊆ ( O ‘ ( bday ‘ 𝑌 ) ) |
| 142 |
141
|
sseli |
⊢ ( 𝑠 ∈ ( R ‘ 𝑌 ) → 𝑠 ∈ ( O ‘ ( bday ‘ 𝑌 ) ) ) |
| 143 |
|
oldbday |
⊢ ( ( ( bday ‘ 𝑌 ) ∈ On ∧ 𝑠 ∈ No ) → ( 𝑠 ∈ ( O ‘ ( bday ‘ 𝑌 ) ) ↔ ( bday ‘ 𝑠 ) ∈ ( bday ‘ 𝑌 ) ) ) |
| 144 |
32 131 143
|
sylancr |
⊢ ( 𝑠 ∈ ( R ‘ 𝑌 ) → ( 𝑠 ∈ ( O ‘ ( bday ‘ 𝑌 ) ) ↔ ( bday ‘ 𝑠 ) ∈ ( bday ‘ 𝑌 ) ) ) |
| 145 |
142 144
|
mpbid |
⊢ ( 𝑠 ∈ ( R ‘ 𝑌 ) → ( bday ‘ 𝑠 ) ∈ ( bday ‘ 𝑌 ) ) |
| 146 |
|
naddel2 |
⊢ ( ( ( bday ‘ 𝑠 ) ∈ On ∧ ( bday ‘ 𝑌 ) ∈ On ∧ ( bday ‘ 𝑋 ) ∈ On ) → ( ( bday ‘ 𝑠 ) ∈ ( bday ‘ 𝑌 ) ↔ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) ) |
| 147 |
135 32 40 146
|
mp3an |
⊢ ( ( bday ‘ 𝑠 ) ∈ ( bday ‘ 𝑌 ) ↔ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
| 148 |
145 147
|
sylib |
⊢ ( 𝑠 ∈ ( R ‘ 𝑌 ) → ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
| 149 |
148
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) → ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
| 150 |
|
elun1 |
⊢ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) → ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) |
| 151 |
149 150
|
syl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) → ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) |
| 152 |
140 151
|
eqeltrid |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) → ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 0s ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) |
| 153 |
128 129 132 133 152
|
addsproplem1 |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) → ( ( 𝑋 +s 𝑠 ) ∈ No ∧ ( 𝑠 <s 0s → ( 𝑠 +s 𝑋 ) <s ( 0s +s 𝑋 ) ) ) ) |
| 154 |
153
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) → ( 𝑋 +s 𝑠 ) ∈ No ) |
| 155 |
|
eleq1a |
⊢ ( ( 𝑋 +s 𝑠 ) ∈ No → ( 𝑡 = ( 𝑋 +s 𝑠 ) → 𝑡 ∈ No ) ) |
| 156 |
154 155
|
syl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) → ( 𝑡 = ( 𝑋 +s 𝑠 ) → 𝑡 ∈ No ) ) |
| 157 |
156
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑡 = ( 𝑋 +s 𝑠 ) → 𝑡 ∈ No ) ) |
| 158 |
157
|
abssdv |
⊢ ( 𝜑 → { 𝑡 ∣ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑡 = ( 𝑋 +s 𝑠 ) } ⊆ No ) |
| 159 |
127 158
|
unssd |
⊢ ( 𝜑 → ( { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑤 = ( 𝑟 +s 𝑌 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑡 = ( 𝑋 +s 𝑠 ) } ) ⊆ No ) |
| 160 |
|
elun |
⊢ ( 𝑎 ∈ ( { 𝑝 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑝 = ( 𝑙 +s 𝑌 ) } ∪ { 𝑞 ∣ ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑞 = ( 𝑋 +s 𝑚 ) } ) ↔ ( 𝑎 ∈ { 𝑝 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑝 = ( 𝑙 +s 𝑌 ) } ∨ 𝑎 ∈ { 𝑞 ∣ ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑞 = ( 𝑋 +s 𝑚 ) } ) ) |
| 161 |
|
vex |
⊢ 𝑎 ∈ V |
| 162 |
|
eqeq1 |
⊢ ( 𝑝 = 𝑎 → ( 𝑝 = ( 𝑙 +s 𝑌 ) ↔ 𝑎 = ( 𝑙 +s 𝑌 ) ) ) |
| 163 |
162
|
rexbidv |
⊢ ( 𝑝 = 𝑎 → ( ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑝 = ( 𝑙 +s 𝑌 ) ↔ ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑎 = ( 𝑙 +s 𝑌 ) ) ) |
| 164 |
161 163
|
elab |
⊢ ( 𝑎 ∈ { 𝑝 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑝 = ( 𝑙 +s 𝑌 ) } ↔ ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑎 = ( 𝑙 +s 𝑌 ) ) |
| 165 |
|
eqeq1 |
⊢ ( 𝑞 = 𝑎 → ( 𝑞 = ( 𝑋 +s 𝑚 ) ↔ 𝑎 = ( 𝑋 +s 𝑚 ) ) ) |
| 166 |
165
|
rexbidv |
⊢ ( 𝑞 = 𝑎 → ( ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑞 = ( 𝑋 +s 𝑚 ) ↔ ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑎 = ( 𝑋 +s 𝑚 ) ) ) |
| 167 |
161 166
|
elab |
⊢ ( 𝑎 ∈ { 𝑞 ∣ ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑞 = ( 𝑋 +s 𝑚 ) } ↔ ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑎 = ( 𝑋 +s 𝑚 ) ) |
| 168 |
164 167
|
orbi12i |
⊢ ( ( 𝑎 ∈ { 𝑝 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑝 = ( 𝑙 +s 𝑌 ) } ∨ 𝑎 ∈ { 𝑞 ∣ ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑞 = ( 𝑋 +s 𝑚 ) } ) ↔ ( ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑎 = ( 𝑙 +s 𝑌 ) ∨ ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑎 = ( 𝑋 +s 𝑚 ) ) ) |
| 169 |
160 168
|
bitri |
⊢ ( 𝑎 ∈ ( { 𝑝 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑝 = ( 𝑙 +s 𝑌 ) } ∪ { 𝑞 ∣ ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑞 = ( 𝑋 +s 𝑚 ) } ) ↔ ( ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑎 = ( 𝑙 +s 𝑌 ) ∨ ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑎 = ( 𝑋 +s 𝑚 ) ) ) |
| 170 |
|
elun |
⊢ ( 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑤 = ( 𝑟 +s 𝑌 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑡 = ( 𝑋 +s 𝑠 ) } ) ↔ ( 𝑏 ∈ { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑤 = ( 𝑟 +s 𝑌 ) } ∨ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑡 = ( 𝑋 +s 𝑠 ) } ) ) |
| 171 |
|
vex |
⊢ 𝑏 ∈ V |
| 172 |
|
eqeq1 |
⊢ ( 𝑤 = 𝑏 → ( 𝑤 = ( 𝑟 +s 𝑌 ) ↔ 𝑏 = ( 𝑟 +s 𝑌 ) ) ) |
| 173 |
172
|
rexbidv |
⊢ ( 𝑤 = 𝑏 → ( ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑤 = ( 𝑟 +s 𝑌 ) ↔ ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑏 = ( 𝑟 +s 𝑌 ) ) ) |
| 174 |
171 173
|
elab |
⊢ ( 𝑏 ∈ { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑤 = ( 𝑟 +s 𝑌 ) } ↔ ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑏 = ( 𝑟 +s 𝑌 ) ) |
| 175 |
|
eqeq1 |
⊢ ( 𝑡 = 𝑏 → ( 𝑡 = ( 𝑋 +s 𝑠 ) ↔ 𝑏 = ( 𝑋 +s 𝑠 ) ) ) |
| 176 |
175
|
rexbidv |
⊢ ( 𝑡 = 𝑏 → ( ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑡 = ( 𝑋 +s 𝑠 ) ↔ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑏 = ( 𝑋 +s 𝑠 ) ) ) |
| 177 |
171 176
|
elab |
⊢ ( 𝑏 ∈ { 𝑡 ∣ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑡 = ( 𝑋 +s 𝑠 ) } ↔ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑏 = ( 𝑋 +s 𝑠 ) ) |
| 178 |
174 177
|
orbi12i |
⊢ ( ( 𝑏 ∈ { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑤 = ( 𝑟 +s 𝑌 ) } ∨ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑡 = ( 𝑋 +s 𝑠 ) } ) ↔ ( ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑏 = ( 𝑟 +s 𝑌 ) ∨ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑏 = ( 𝑋 +s 𝑠 ) ) ) |
| 179 |
170 178
|
bitri |
⊢ ( 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑤 = ( 𝑟 +s 𝑌 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑡 = ( 𝑋 +s 𝑠 ) } ) ↔ ( ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑏 = ( 𝑟 +s 𝑌 ) ∨ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑏 = ( 𝑋 +s 𝑠 ) ) ) |
| 180 |
169 179
|
anbi12i |
⊢ ( ( 𝑎 ∈ ( { 𝑝 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑝 = ( 𝑙 +s 𝑌 ) } ∪ { 𝑞 ∣ ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑞 = ( 𝑋 +s 𝑚 ) } ) ∧ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑤 = ( 𝑟 +s 𝑌 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑡 = ( 𝑋 +s 𝑠 ) } ) ) ↔ ( ( ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑎 = ( 𝑙 +s 𝑌 ) ∨ ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑎 = ( 𝑋 +s 𝑚 ) ) ∧ ( ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑏 = ( 𝑟 +s 𝑌 ) ∨ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑏 = ( 𝑋 +s 𝑠 ) ) ) ) |
| 181 |
|
anddi |
⊢ ( ( ( ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑎 = ( 𝑙 +s 𝑌 ) ∨ ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑎 = ( 𝑋 +s 𝑚 ) ) ∧ ( ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑏 = ( 𝑟 +s 𝑌 ) ∨ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑏 = ( 𝑋 +s 𝑠 ) ) ) ↔ ( ( ( ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑎 = ( 𝑙 +s 𝑌 ) ∧ ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑏 = ( 𝑟 +s 𝑌 ) ) ∨ ( ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑎 = ( 𝑙 +s 𝑌 ) ∧ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑏 = ( 𝑋 +s 𝑠 ) ) ) ∨ ( ( ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑎 = ( 𝑋 +s 𝑚 ) ∧ ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑏 = ( 𝑟 +s 𝑌 ) ) ∨ ( ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑎 = ( 𝑋 +s 𝑚 ) ∧ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑏 = ( 𝑋 +s 𝑠 ) ) ) ) ) |
| 182 |
180 181
|
bitri |
⊢ ( ( 𝑎 ∈ ( { 𝑝 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑝 = ( 𝑙 +s 𝑌 ) } ∪ { 𝑞 ∣ ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑞 = ( 𝑋 +s 𝑚 ) } ) ∧ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑤 = ( 𝑟 +s 𝑌 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑡 = ( 𝑋 +s 𝑠 ) } ) ) ↔ ( ( ( ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑎 = ( 𝑙 +s 𝑌 ) ∧ ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑏 = ( 𝑟 +s 𝑌 ) ) ∨ ( ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑎 = ( 𝑙 +s 𝑌 ) ∧ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑏 = ( 𝑋 +s 𝑠 ) ) ) ∨ ( ( ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑎 = ( 𝑋 +s 𝑚 ) ∧ ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑏 = ( 𝑟 +s 𝑌 ) ) ∨ ( ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑎 = ( 𝑋 +s 𝑚 ) ∧ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑏 = ( 𝑋 +s 𝑠 ) ) ) ) ) |
| 183 |
|
reeanv |
⊢ ( ∃ 𝑙 ∈ ( L ‘ 𝑋 ) ∃ 𝑟 ∈ ( R ‘ 𝑋 ) ( 𝑎 = ( 𝑙 +s 𝑌 ) ∧ 𝑏 = ( 𝑟 +s 𝑌 ) ) ↔ ( ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑎 = ( 𝑙 +s 𝑌 ) ∧ ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑏 = ( 𝑟 +s 𝑌 ) ) ) |
| 184 |
|
lltropt |
⊢ ( L ‘ 𝑋 ) <<s ( R ‘ 𝑋 ) |
| 185 |
184
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( L ‘ 𝑋 ) <<s ( R ‘ 𝑋 ) ) |
| 186 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → 𝑙 ∈ ( L ‘ 𝑋 ) ) |
| 187 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → 𝑟 ∈ ( R ‘ 𝑋 ) ) |
| 188 |
185 186 187
|
ssltsepcd |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → 𝑙 <s 𝑟 ) |
| 189 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ∀ 𝑧 ∈ No ( ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) ) |
| 190 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → 𝑌 ∈ No ) |
| 191 |
20
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → 𝑙 ∈ No ) |
| 192 |
95
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → 𝑟 ∈ No ) |
| 193 |
|
naddcom |
⊢ ( ( ( bday ‘ 𝑌 ) ∈ On ∧ ( bday ‘ 𝑙 ) ∈ On ) → ( ( bday ‘ 𝑌 ) +no ( bday ‘ 𝑙 ) ) = ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑌 ) ) ) |
| 194 |
32 27 193
|
mp2an |
⊢ ( ( bday ‘ 𝑌 ) +no ( bday ‘ 𝑙 ) ) = ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑌 ) ) |
| 195 |
46
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑌 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
| 196 |
194 195
|
eqeltrid |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( ( bday ‘ 𝑌 ) +no ( bday ‘ 𝑙 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
| 197 |
|
naddcom |
⊢ ( ( ( bday ‘ 𝑌 ) ∈ On ∧ ( bday ‘ 𝑟 ) ∈ On ) → ( ( bday ‘ 𝑌 ) +no ( bday ‘ 𝑟 ) ) = ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑌 ) ) ) |
| 198 |
32 100 197
|
mp2an |
⊢ ( ( bday ‘ 𝑌 ) +no ( bday ‘ 𝑟 ) ) = ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑌 ) ) |
| 199 |
117
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑌 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
| 200 |
198 199
|
eqeltrid |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( ( bday ‘ 𝑌 ) +no ( bday ‘ 𝑟 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
| 201 |
|
naddcl |
⊢ ( ( ( bday ‘ 𝑌 ) ∈ On ∧ ( bday ‘ 𝑙 ) ∈ On ) → ( ( bday ‘ 𝑌 ) +no ( bday ‘ 𝑙 ) ) ∈ On ) |
| 202 |
32 27 201
|
mp2an |
⊢ ( ( bday ‘ 𝑌 ) +no ( bday ‘ 𝑙 ) ) ∈ On |
| 203 |
|
naddcl |
⊢ ( ( ( bday ‘ 𝑌 ) ∈ On ∧ ( bday ‘ 𝑟 ) ∈ On ) → ( ( bday ‘ 𝑌 ) +no ( bday ‘ 𝑟 ) ) ∈ On ) |
| 204 |
32 100 203
|
mp2an |
⊢ ( ( bday ‘ 𝑌 ) +no ( bday ‘ 𝑟 ) ) ∈ On |
| 205 |
|
naddcl |
⊢ ( ( ( bday ‘ 𝑋 ) ∈ On ∧ ( bday ‘ 𝑌 ) ∈ On ) → ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∈ On ) |
| 206 |
40 32 205
|
mp2an |
⊢ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∈ On |
| 207 |
|
onunel |
⊢ ( ( ( ( bday ‘ 𝑌 ) +no ( bday ‘ 𝑙 ) ) ∈ On ∧ ( ( bday ‘ 𝑌 ) +no ( bday ‘ 𝑟 ) ) ∈ On ∧ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∈ On ) → ( ( ( ( bday ‘ 𝑌 ) +no ( bday ‘ 𝑙 ) ) ∪ ( ( bday ‘ 𝑌 ) +no ( bday ‘ 𝑟 ) ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ↔ ( ( ( bday ‘ 𝑌 ) +no ( bday ‘ 𝑙 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∧ ( ( bday ‘ 𝑌 ) +no ( bday ‘ 𝑟 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) ) ) |
| 208 |
202 204 206 207
|
mp3an |
⊢ ( ( ( ( bday ‘ 𝑌 ) +no ( bday ‘ 𝑙 ) ) ∪ ( ( bday ‘ 𝑌 ) +no ( bday ‘ 𝑟 ) ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ↔ ( ( ( bday ‘ 𝑌 ) +no ( bday ‘ 𝑙 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∧ ( ( bday ‘ 𝑌 ) +no ( bday ‘ 𝑟 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) ) |
| 209 |
196 200 208
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( ( ( bday ‘ 𝑌 ) +no ( bday ‘ 𝑙 ) ) ∪ ( ( bday ‘ 𝑌 ) +no ( bday ‘ 𝑟 ) ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
| 210 |
|
elun1 |
⊢ ( ( ( ( bday ‘ 𝑌 ) +no ( bday ‘ 𝑙 ) ) ∪ ( ( bday ‘ 𝑌 ) +no ( bday ‘ 𝑟 ) ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) → ( ( ( bday ‘ 𝑌 ) +no ( bday ‘ 𝑙 ) ) ∪ ( ( bday ‘ 𝑌 ) +no ( bday ‘ 𝑟 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) |
| 211 |
209 210
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( ( ( bday ‘ 𝑌 ) +no ( bday ‘ 𝑙 ) ) ∪ ( ( bday ‘ 𝑌 ) +no ( bday ‘ 𝑟 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) |
| 212 |
189 190 191 192 211
|
addsproplem1 |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( ( 𝑌 +s 𝑙 ) ∈ No ∧ ( 𝑙 <s 𝑟 → ( 𝑙 +s 𝑌 ) <s ( 𝑟 +s 𝑌 ) ) ) ) |
| 213 |
212
|
simprd |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( 𝑙 <s 𝑟 → ( 𝑙 +s 𝑌 ) <s ( 𝑟 +s 𝑌 ) ) ) |
| 214 |
188 213
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( 𝑙 +s 𝑌 ) <s ( 𝑟 +s 𝑌 ) ) |
| 215 |
|
breq12 |
⊢ ( ( 𝑎 = ( 𝑙 +s 𝑌 ) ∧ 𝑏 = ( 𝑟 +s 𝑌 ) ) → ( 𝑎 <s 𝑏 ↔ ( 𝑙 +s 𝑌 ) <s ( 𝑟 +s 𝑌 ) ) ) |
| 216 |
214 215
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( ( 𝑎 = ( 𝑙 +s 𝑌 ) ∧ 𝑏 = ( 𝑟 +s 𝑌 ) ) → 𝑎 <s 𝑏 ) ) |
| 217 |
216
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑙 ∈ ( L ‘ 𝑋 ) ∃ 𝑟 ∈ ( R ‘ 𝑋 ) ( 𝑎 = ( 𝑙 +s 𝑌 ) ∧ 𝑏 = ( 𝑟 +s 𝑌 ) ) → 𝑎 <s 𝑏 ) ) |
| 218 |
183 217
|
biimtrrid |
⊢ ( 𝜑 → ( ( ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑎 = ( 𝑙 +s 𝑌 ) ∧ ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑏 = ( 𝑟 +s 𝑌 ) ) → 𝑎 <s 𝑏 ) ) |
| 219 |
|
reeanv |
⊢ ( ∃ 𝑙 ∈ ( L ‘ 𝑋 ) ∃ 𝑠 ∈ ( R ‘ 𝑌 ) ( 𝑎 = ( 𝑙 +s 𝑌 ) ∧ 𝑏 = ( 𝑋 +s 𝑠 ) ) ↔ ( ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑎 = ( 𝑙 +s 𝑌 ) ∧ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑏 = ( 𝑋 +s 𝑠 ) ) ) |
| 220 |
52
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( 𝑙 +s 𝑌 ) ∈ No ) |
| 221 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ∀ 𝑧 ∈ No ( ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) ) |
| 222 |
20
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → 𝑙 ∈ No ) |
| 223 |
131
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → 𝑠 ∈ No ) |
| 224 |
23
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → 0s ∈ No ) |
| 225 |
30
|
uneq2i |
⊢ ( ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑠 ) ) ∪ ( ( bday ‘ 𝑙 ) +no ( bday ‘ 0s ) ) ) = ( ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑠 ) ) ∪ ( bday ‘ 𝑙 ) ) |
| 226 |
|
naddword1 |
⊢ ( ( ( bday ‘ 𝑙 ) ∈ On ∧ ( bday ‘ 𝑠 ) ∈ On ) → ( bday ‘ 𝑙 ) ⊆ ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑠 ) ) ) |
| 227 |
27 135 226
|
mp2an |
⊢ ( bday ‘ 𝑙 ) ⊆ ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑠 ) ) |
| 228 |
|
ssequn2 |
⊢ ( ( bday ‘ 𝑙 ) ⊆ ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑠 ) ) ↔ ( ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑠 ) ) ∪ ( bday ‘ 𝑙 ) ) = ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑠 ) ) ) |
| 229 |
227 228
|
mpbi |
⊢ ( ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑠 ) ) ∪ ( bday ‘ 𝑙 ) ) = ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑠 ) ) |
| 230 |
225 229
|
eqtri |
⊢ ( ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑠 ) ) ∪ ( ( bday ‘ 𝑙 ) +no ( bday ‘ 0s ) ) ) = ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑠 ) ) |
| 231 |
|
naddel1 |
⊢ ( ( ( bday ‘ 𝑙 ) ∈ On ∧ ( bday ‘ 𝑋 ) ∈ On ∧ ( bday ‘ 𝑠 ) ∈ On ) → ( ( bday ‘ 𝑙 ) ∈ ( bday ‘ 𝑋 ) ↔ ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑠 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) ) ) |
| 232 |
27 40 135 231
|
mp3an |
⊢ ( ( bday ‘ 𝑙 ) ∈ ( bday ‘ 𝑋 ) ↔ ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑠 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) ) |
| 233 |
43 232
|
sylib |
⊢ ( 𝑙 ∈ ( L ‘ 𝑋 ) → ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑠 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) ) |
| 234 |
233
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑠 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) ) |
| 235 |
148
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
| 236 |
|
ontr1 |
⊢ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∈ On → ( ( ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑠 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) ∧ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) → ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑠 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) ) |
| 237 |
206 236
|
ax-mp |
⊢ ( ( ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑠 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) ∧ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) → ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑠 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
| 238 |
234 235 237
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑠 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
| 239 |
|
elun1 |
⊢ ( ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑠 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) → ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑠 ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) |
| 240 |
238 239
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑠 ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) |
| 241 |
230 240
|
eqeltrid |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑠 ) ) ∪ ( ( bday ‘ 𝑙 ) +no ( bday ‘ 0s ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) |
| 242 |
221 222 223 224 241
|
addsproplem1 |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( ( 𝑙 +s 𝑠 ) ∈ No ∧ ( 𝑠 <s 0s → ( 𝑠 +s 𝑙 ) <s ( 0s +s 𝑙 ) ) ) ) |
| 243 |
242
|
simpld |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( 𝑙 +s 𝑠 ) ∈ No ) |
| 244 |
154
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( 𝑋 +s 𝑠 ) ∈ No ) |
| 245 |
|
rightval |
⊢ ( R ‘ 𝑌 ) = { 𝑠 ∈ ( O ‘ ( bday ‘ 𝑌 ) ) ∣ 𝑌 <s 𝑠 } |
| 246 |
245
|
reqabi |
⊢ ( 𝑠 ∈ ( R ‘ 𝑌 ) ↔ ( 𝑠 ∈ ( O ‘ ( bday ‘ 𝑌 ) ) ∧ 𝑌 <s 𝑠 ) ) |
| 247 |
246
|
simprbi |
⊢ ( 𝑠 ∈ ( R ‘ 𝑌 ) → 𝑌 <s 𝑠 ) |
| 248 |
247
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → 𝑌 <s 𝑠 ) |
| 249 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → 𝑌 ∈ No ) |
| 250 |
46
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑌 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
| 251 |
|
naddcl |
⊢ ( ( ( bday ‘ 𝑙 ) ∈ On ∧ ( bday ‘ 𝑌 ) ∈ On ) → ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑌 ) ) ∈ On ) |
| 252 |
27 32 251
|
mp2an |
⊢ ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑌 ) ) ∈ On |
| 253 |
|
naddcl |
⊢ ( ( ( bday ‘ 𝑙 ) ∈ On ∧ ( bday ‘ 𝑠 ) ∈ On ) → ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑠 ) ) ∈ On ) |
| 254 |
27 135 253
|
mp2an |
⊢ ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑠 ) ) ∈ On |
| 255 |
|
onunel |
⊢ ( ( ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑌 ) ) ∈ On ∧ ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑠 ) ) ∈ On ∧ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∈ On ) → ( ( ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑠 ) ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ↔ ( ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑌 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∧ ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑠 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) ) ) |
| 256 |
252 254 206 255
|
mp3an |
⊢ ( ( ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑠 ) ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ↔ ( ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑌 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∧ ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑠 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) ) |
| 257 |
250 238 256
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑠 ) ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
| 258 |
|
elun1 |
⊢ ( ( ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑠 ) ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) → ( ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑠 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) |
| 259 |
257 258
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑠 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) |
| 260 |
221 222 249 223 259
|
addsproplem1 |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( ( 𝑙 +s 𝑌 ) ∈ No ∧ ( 𝑌 <s 𝑠 → ( 𝑌 +s 𝑙 ) <s ( 𝑠 +s 𝑙 ) ) ) ) |
| 261 |
260
|
simprd |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( 𝑌 <s 𝑠 → ( 𝑌 +s 𝑙 ) <s ( 𝑠 +s 𝑙 ) ) ) |
| 262 |
248 261
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( 𝑌 +s 𝑙 ) <s ( 𝑠 +s 𝑙 ) ) |
| 263 |
222 249
|
addscomd |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( 𝑙 +s 𝑌 ) = ( 𝑌 +s 𝑙 ) ) |
| 264 |
222 223
|
addscomd |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( 𝑙 +s 𝑠 ) = ( 𝑠 +s 𝑙 ) ) |
| 265 |
262 263 264
|
3brtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( 𝑙 +s 𝑌 ) <s ( 𝑙 +s 𝑠 ) ) |
| 266 |
|
leftval |
⊢ ( L ‘ 𝑋 ) = { 𝑙 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∣ 𝑙 <s 𝑋 } |
| 267 |
266
|
reqabi |
⊢ ( 𝑙 ∈ ( L ‘ 𝑋 ) ↔ ( 𝑙 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝑙 <s 𝑋 ) ) |
| 268 |
267
|
simprbi |
⊢ ( 𝑙 ∈ ( L ‘ 𝑋 ) → 𝑙 <s 𝑋 ) |
| 269 |
268
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → 𝑙 <s 𝑋 ) |
| 270 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → 𝑋 ∈ No ) |
| 271 |
|
naddcom |
⊢ ( ( ( bday ‘ 𝑠 ) ∈ On ∧ ( bday ‘ 𝑙 ) ∈ On ) → ( ( bday ‘ 𝑠 ) +no ( bday ‘ 𝑙 ) ) = ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑠 ) ) ) |
| 272 |
135 27 271
|
mp2an |
⊢ ( ( bday ‘ 𝑠 ) +no ( bday ‘ 𝑙 ) ) = ( ( bday ‘ 𝑙 ) +no ( bday ‘ 𝑠 ) ) |
| 273 |
272 238
|
eqeltrid |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( ( bday ‘ 𝑠 ) +no ( bday ‘ 𝑙 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
| 274 |
|
naddcom |
⊢ ( ( ( bday ‘ 𝑠 ) ∈ On ∧ ( bday ‘ 𝑋 ) ∈ On ) → ( ( bday ‘ 𝑠 ) +no ( bday ‘ 𝑋 ) ) = ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) ) |
| 275 |
135 40 274
|
mp2an |
⊢ ( ( bday ‘ 𝑠 ) +no ( bday ‘ 𝑋 ) ) = ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) |
| 276 |
275 235
|
eqeltrid |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( ( bday ‘ 𝑠 ) +no ( bday ‘ 𝑋 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
| 277 |
|
naddcl |
⊢ ( ( ( bday ‘ 𝑠 ) ∈ On ∧ ( bday ‘ 𝑙 ) ∈ On ) → ( ( bday ‘ 𝑠 ) +no ( bday ‘ 𝑙 ) ) ∈ On ) |
| 278 |
135 27 277
|
mp2an |
⊢ ( ( bday ‘ 𝑠 ) +no ( bday ‘ 𝑙 ) ) ∈ On |
| 279 |
|
naddcl |
⊢ ( ( ( bday ‘ 𝑠 ) ∈ On ∧ ( bday ‘ 𝑋 ) ∈ On ) → ( ( bday ‘ 𝑠 ) +no ( bday ‘ 𝑋 ) ) ∈ On ) |
| 280 |
135 40 279
|
mp2an |
⊢ ( ( bday ‘ 𝑠 ) +no ( bday ‘ 𝑋 ) ) ∈ On |
| 281 |
|
onunel |
⊢ ( ( ( ( bday ‘ 𝑠 ) +no ( bday ‘ 𝑙 ) ) ∈ On ∧ ( ( bday ‘ 𝑠 ) +no ( bday ‘ 𝑋 ) ) ∈ On ∧ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∈ On ) → ( ( ( ( bday ‘ 𝑠 ) +no ( bday ‘ 𝑙 ) ) ∪ ( ( bday ‘ 𝑠 ) +no ( bday ‘ 𝑋 ) ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ↔ ( ( ( bday ‘ 𝑠 ) +no ( bday ‘ 𝑙 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∧ ( ( bday ‘ 𝑠 ) +no ( bday ‘ 𝑋 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) ) ) |
| 282 |
278 280 206 281
|
mp3an |
⊢ ( ( ( ( bday ‘ 𝑠 ) +no ( bday ‘ 𝑙 ) ) ∪ ( ( bday ‘ 𝑠 ) +no ( bday ‘ 𝑋 ) ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ↔ ( ( ( bday ‘ 𝑠 ) +no ( bday ‘ 𝑙 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∧ ( ( bday ‘ 𝑠 ) +no ( bday ‘ 𝑋 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) ) |
| 283 |
273 276 282
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( ( ( bday ‘ 𝑠 ) +no ( bday ‘ 𝑙 ) ) ∪ ( ( bday ‘ 𝑠 ) +no ( bday ‘ 𝑋 ) ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
| 284 |
|
elun1 |
⊢ ( ( ( ( bday ‘ 𝑠 ) +no ( bday ‘ 𝑙 ) ) ∪ ( ( bday ‘ 𝑠 ) +no ( bday ‘ 𝑋 ) ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) → ( ( ( bday ‘ 𝑠 ) +no ( bday ‘ 𝑙 ) ) ∪ ( ( bday ‘ 𝑠 ) +no ( bday ‘ 𝑋 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) |
| 285 |
283 284
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( ( ( bday ‘ 𝑠 ) +no ( bday ‘ 𝑙 ) ) ∪ ( ( bday ‘ 𝑠 ) +no ( bday ‘ 𝑋 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) |
| 286 |
221 223 222 270 285
|
addsproplem1 |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( ( 𝑠 +s 𝑙 ) ∈ No ∧ ( 𝑙 <s 𝑋 → ( 𝑙 +s 𝑠 ) <s ( 𝑋 +s 𝑠 ) ) ) ) |
| 287 |
286
|
simprd |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( 𝑙 <s 𝑋 → ( 𝑙 +s 𝑠 ) <s ( 𝑋 +s 𝑠 ) ) ) |
| 288 |
269 287
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( 𝑙 +s 𝑠 ) <s ( 𝑋 +s 𝑠 ) ) |
| 289 |
220 243 244 265 288
|
slttrd |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( 𝑙 +s 𝑌 ) <s ( 𝑋 +s 𝑠 ) ) |
| 290 |
|
breq12 |
⊢ ( ( 𝑎 = ( 𝑙 +s 𝑌 ) ∧ 𝑏 = ( 𝑋 +s 𝑠 ) ) → ( 𝑎 <s 𝑏 ↔ ( 𝑙 +s 𝑌 ) <s ( 𝑋 +s 𝑠 ) ) ) |
| 291 |
289 290
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝑋 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( ( 𝑎 = ( 𝑙 +s 𝑌 ) ∧ 𝑏 = ( 𝑋 +s 𝑠 ) ) → 𝑎 <s 𝑏 ) ) |
| 292 |
291
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑙 ∈ ( L ‘ 𝑋 ) ∃ 𝑠 ∈ ( R ‘ 𝑌 ) ( 𝑎 = ( 𝑙 +s 𝑌 ) ∧ 𝑏 = ( 𝑋 +s 𝑠 ) ) → 𝑎 <s 𝑏 ) ) |
| 293 |
219 292
|
biimtrrid |
⊢ ( 𝜑 → ( ( ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑎 = ( 𝑙 +s 𝑌 ) ∧ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑏 = ( 𝑋 +s 𝑠 ) ) → 𝑎 <s 𝑏 ) ) |
| 294 |
218 293
|
jaod |
⊢ ( 𝜑 → ( ( ( ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑎 = ( 𝑙 +s 𝑌 ) ∧ ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑏 = ( 𝑟 +s 𝑌 ) ) ∨ ( ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑎 = ( 𝑙 +s 𝑌 ) ∧ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑏 = ( 𝑋 +s 𝑠 ) ) ) → 𝑎 <s 𝑏 ) ) |
| 295 |
|
reeanv |
⊢ ( ∃ 𝑚 ∈ ( L ‘ 𝑌 ) ∃ 𝑟 ∈ ( R ‘ 𝑋 ) ( 𝑎 = ( 𝑋 +s 𝑚 ) ∧ 𝑏 = ( 𝑟 +s 𝑌 ) ) ↔ ( ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑎 = ( 𝑋 +s 𝑚 ) ∧ ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑏 = ( 𝑟 +s 𝑌 ) ) ) |
| 296 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ∀ 𝑧 ∈ No ( ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) ) |
| 297 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → 𝑋 ∈ No ) |
| 298 |
60
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → 𝑚 ∈ No ) |
| 299 |
23
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → 0s ∈ No ) |
| 300 |
81
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
| 301 |
300 83
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) |
| 302 |
73 301
|
eqeltrid |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 0s ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) |
| 303 |
296 297 298 299 302
|
addsproplem1 |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( ( 𝑋 +s 𝑚 ) ∈ No ∧ ( 𝑚 <s 0s → ( 𝑚 +s 𝑋 ) <s ( 0s +s 𝑋 ) ) ) ) |
| 304 |
303
|
simpld |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( 𝑋 +s 𝑚 ) ∈ No ) |
| 305 |
95
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → 𝑟 ∈ No ) |
| 306 |
103
|
uneq2i |
⊢ ( ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑚 ) ) ∪ ( ( bday ‘ 𝑟 ) +no ( bday ‘ 0s ) ) ) = ( ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑚 ) ) ∪ ( bday ‘ 𝑟 ) ) |
| 307 |
|
naddword1 |
⊢ ( ( ( bday ‘ 𝑟 ) ∈ On ∧ ( bday ‘ 𝑚 ) ∈ On ) → ( bday ‘ 𝑟 ) ⊆ ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑚 ) ) ) |
| 308 |
100 68 307
|
mp2an |
⊢ ( bday ‘ 𝑟 ) ⊆ ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑚 ) ) |
| 309 |
|
ssequn2 |
⊢ ( ( bday ‘ 𝑟 ) ⊆ ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑚 ) ) ↔ ( ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑚 ) ) ∪ ( bday ‘ 𝑟 ) ) = ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑚 ) ) ) |
| 310 |
308 309
|
mpbi |
⊢ ( ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑚 ) ) ∪ ( bday ‘ 𝑟 ) ) = ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑚 ) ) |
| 311 |
306 310
|
eqtri |
⊢ ( ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑚 ) ) ∪ ( ( bday ‘ 𝑟 ) +no ( bday ‘ 0s ) ) ) = ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑚 ) ) |
| 312 |
|
naddel1 |
⊢ ( ( ( bday ‘ 𝑟 ) ∈ On ∧ ( bday ‘ 𝑋 ) ∈ On ∧ ( bday ‘ 𝑚 ) ∈ On ) → ( ( bday ‘ 𝑟 ) ∈ ( bday ‘ 𝑋 ) ↔ ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑚 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ) ) |
| 313 |
100 40 68 312
|
mp3an |
⊢ ( ( bday ‘ 𝑟 ) ∈ ( bday ‘ 𝑋 ) ↔ ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑚 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ) |
| 314 |
114 313
|
sylib |
⊢ ( 𝑟 ∈ ( R ‘ 𝑋 ) → ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑚 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ) |
| 315 |
314
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑚 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ) |
| 316 |
|
ontr1 |
⊢ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∈ On → ( ( ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑚 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ∧ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) → ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑚 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) ) |
| 317 |
206 316
|
ax-mp |
⊢ ( ( ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑚 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ∧ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) → ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑚 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
| 318 |
315 300 317
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑚 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
| 319 |
|
elun1 |
⊢ ( ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑚 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) → ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑚 ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) |
| 320 |
318 319
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑚 ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) |
| 321 |
311 320
|
eqeltrid |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑚 ) ) ∪ ( ( bday ‘ 𝑟 ) +no ( bday ‘ 0s ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) |
| 322 |
296 305 298 299 321
|
addsproplem1 |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( ( 𝑟 +s 𝑚 ) ∈ No ∧ ( 𝑚 <s 0s → ( 𝑚 +s 𝑟 ) <s ( 0s +s 𝑟 ) ) ) ) |
| 323 |
322
|
simpld |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( 𝑟 +s 𝑚 ) ∈ No ) |
| 324 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → 𝑌 ∈ No ) |
| 325 |
117
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑌 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
| 326 |
325 119
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑌 ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) |
| 327 |
109 326
|
eqeltrid |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑟 ) +no ( bday ‘ 0s ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) |
| 328 |
296 305 324 299 327
|
addsproplem1 |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( ( 𝑟 +s 𝑌 ) ∈ No ∧ ( 𝑌 <s 0s → ( 𝑌 +s 𝑟 ) <s ( 0s +s 𝑟 ) ) ) ) |
| 329 |
328
|
simpld |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( 𝑟 +s 𝑌 ) ∈ No ) |
| 330 |
|
rightval |
⊢ ( R ‘ 𝑋 ) = { 𝑟 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∣ 𝑋 <s 𝑟 } |
| 331 |
330
|
eleq2i |
⊢ ( 𝑟 ∈ ( R ‘ 𝑋 ) ↔ 𝑟 ∈ { 𝑟 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∣ 𝑋 <s 𝑟 } ) |
| 332 |
331
|
biimpi |
⊢ ( 𝑟 ∈ ( R ‘ 𝑋 ) → 𝑟 ∈ { 𝑟 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∣ 𝑋 <s 𝑟 } ) |
| 333 |
332
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → 𝑟 ∈ { 𝑟 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∣ 𝑋 <s 𝑟 } ) |
| 334 |
|
rabid |
⊢ ( 𝑟 ∈ { 𝑟 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∣ 𝑋 <s 𝑟 } ↔ ( 𝑟 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝑋 <s 𝑟 ) ) |
| 335 |
333 334
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( 𝑟 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝑋 <s 𝑟 ) ) |
| 336 |
335
|
simprd |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → 𝑋 <s 𝑟 ) |
| 337 |
|
naddcom |
⊢ ( ( ( bday ‘ 𝑚 ) ∈ On ∧ ( bday ‘ 𝑋 ) ∈ On ) → ( ( bday ‘ 𝑚 ) +no ( bday ‘ 𝑋 ) ) = ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ) |
| 338 |
68 40 337
|
mp2an |
⊢ ( ( bday ‘ 𝑚 ) +no ( bday ‘ 𝑋 ) ) = ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) |
| 339 |
338 300
|
eqeltrid |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( ( bday ‘ 𝑚 ) +no ( bday ‘ 𝑋 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
| 340 |
|
naddcom |
⊢ ( ( ( bday ‘ 𝑚 ) ∈ On ∧ ( bday ‘ 𝑟 ) ∈ On ) → ( ( bday ‘ 𝑚 ) +no ( bday ‘ 𝑟 ) ) = ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑚 ) ) ) |
| 341 |
68 100 340
|
mp2an |
⊢ ( ( bday ‘ 𝑚 ) +no ( bday ‘ 𝑟 ) ) = ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑚 ) ) |
| 342 |
341 318
|
eqeltrid |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( ( bday ‘ 𝑚 ) +no ( bday ‘ 𝑟 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
| 343 |
|
naddcl |
⊢ ( ( ( bday ‘ 𝑚 ) ∈ On ∧ ( bday ‘ 𝑋 ) ∈ On ) → ( ( bday ‘ 𝑚 ) +no ( bday ‘ 𝑋 ) ) ∈ On ) |
| 344 |
68 40 343
|
mp2an |
⊢ ( ( bday ‘ 𝑚 ) +no ( bday ‘ 𝑋 ) ) ∈ On |
| 345 |
|
naddcl |
⊢ ( ( ( bday ‘ 𝑚 ) ∈ On ∧ ( bday ‘ 𝑟 ) ∈ On ) → ( ( bday ‘ 𝑚 ) +no ( bday ‘ 𝑟 ) ) ∈ On ) |
| 346 |
68 100 345
|
mp2an |
⊢ ( ( bday ‘ 𝑚 ) +no ( bday ‘ 𝑟 ) ) ∈ On |
| 347 |
|
onunel |
⊢ ( ( ( ( bday ‘ 𝑚 ) +no ( bday ‘ 𝑋 ) ) ∈ On ∧ ( ( bday ‘ 𝑚 ) +no ( bday ‘ 𝑟 ) ) ∈ On ∧ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∈ On ) → ( ( ( ( bday ‘ 𝑚 ) +no ( bday ‘ 𝑋 ) ) ∪ ( ( bday ‘ 𝑚 ) +no ( bday ‘ 𝑟 ) ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ↔ ( ( ( bday ‘ 𝑚 ) +no ( bday ‘ 𝑋 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∧ ( ( bday ‘ 𝑚 ) +no ( bday ‘ 𝑟 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) ) ) |
| 348 |
344 346 206 347
|
mp3an |
⊢ ( ( ( ( bday ‘ 𝑚 ) +no ( bday ‘ 𝑋 ) ) ∪ ( ( bday ‘ 𝑚 ) +no ( bday ‘ 𝑟 ) ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ↔ ( ( ( bday ‘ 𝑚 ) +no ( bday ‘ 𝑋 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∧ ( ( bday ‘ 𝑚 ) +no ( bday ‘ 𝑟 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) ) |
| 349 |
339 342 348
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( ( ( bday ‘ 𝑚 ) +no ( bday ‘ 𝑋 ) ) ∪ ( ( bday ‘ 𝑚 ) +no ( bday ‘ 𝑟 ) ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
| 350 |
|
elun1 |
⊢ ( ( ( ( bday ‘ 𝑚 ) +no ( bday ‘ 𝑋 ) ) ∪ ( ( bday ‘ 𝑚 ) +no ( bday ‘ 𝑟 ) ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) → ( ( ( bday ‘ 𝑚 ) +no ( bday ‘ 𝑋 ) ) ∪ ( ( bday ‘ 𝑚 ) +no ( bday ‘ 𝑟 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) |
| 351 |
349 350
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( ( ( bday ‘ 𝑚 ) +no ( bday ‘ 𝑋 ) ) ∪ ( ( bday ‘ 𝑚 ) +no ( bday ‘ 𝑟 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) |
| 352 |
296 298 297 305 351
|
addsproplem1 |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( ( 𝑚 +s 𝑋 ) ∈ No ∧ ( 𝑋 <s 𝑟 → ( 𝑋 +s 𝑚 ) <s ( 𝑟 +s 𝑚 ) ) ) ) |
| 353 |
352
|
simprd |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( 𝑋 <s 𝑟 → ( 𝑋 +s 𝑚 ) <s ( 𝑟 +s 𝑚 ) ) ) |
| 354 |
336 353
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( 𝑋 +s 𝑚 ) <s ( 𝑟 +s 𝑚 ) ) |
| 355 |
|
leftval |
⊢ ( L ‘ 𝑌 ) = { 𝑚 ∈ ( O ‘ ( bday ‘ 𝑌 ) ) ∣ 𝑚 <s 𝑌 } |
| 356 |
355
|
eleq2i |
⊢ ( 𝑚 ∈ ( L ‘ 𝑌 ) ↔ 𝑚 ∈ { 𝑚 ∈ ( O ‘ ( bday ‘ 𝑌 ) ) ∣ 𝑚 <s 𝑌 } ) |
| 357 |
356
|
biimpi |
⊢ ( 𝑚 ∈ ( L ‘ 𝑌 ) → 𝑚 ∈ { 𝑚 ∈ ( O ‘ ( bday ‘ 𝑌 ) ) ∣ 𝑚 <s 𝑌 } ) |
| 358 |
357
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → 𝑚 ∈ { 𝑚 ∈ ( O ‘ ( bday ‘ 𝑌 ) ) ∣ 𝑚 <s 𝑌 } ) |
| 359 |
|
rabid |
⊢ ( 𝑚 ∈ { 𝑚 ∈ ( O ‘ ( bday ‘ 𝑌 ) ) ∣ 𝑚 <s 𝑌 } ↔ ( 𝑚 ∈ ( O ‘ ( bday ‘ 𝑌 ) ) ∧ 𝑚 <s 𝑌 ) ) |
| 360 |
358 359
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( 𝑚 ∈ ( O ‘ ( bday ‘ 𝑌 ) ) ∧ 𝑚 <s 𝑌 ) ) |
| 361 |
360
|
simprd |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → 𝑚 <s 𝑌 ) |
| 362 |
|
naddcl |
⊢ ( ( ( bday ‘ 𝑟 ) ∈ On ∧ ( bday ‘ 𝑚 ) ∈ On ) → ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑚 ) ) ∈ On ) |
| 363 |
100 68 362
|
mp2an |
⊢ ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑚 ) ) ∈ On |
| 364 |
|
naddcl |
⊢ ( ( ( bday ‘ 𝑟 ) ∈ On ∧ ( bday ‘ 𝑌 ) ∈ On ) → ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑌 ) ) ∈ On ) |
| 365 |
100 32 364
|
mp2an |
⊢ ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑌 ) ) ∈ On |
| 366 |
|
onunel |
⊢ ( ( ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑚 ) ) ∈ On ∧ ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑌 ) ) ∈ On ∧ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∈ On ) → ( ( ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑚 ) ) ∪ ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑌 ) ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ↔ ( ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑚 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∧ ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑌 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) ) ) |
| 367 |
363 365 206 366
|
mp3an |
⊢ ( ( ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑚 ) ) ∪ ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑌 ) ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ↔ ( ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑚 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∧ ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑌 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) ) |
| 368 |
318 325 367
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑚 ) ) ∪ ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑌 ) ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
| 369 |
|
elun1 |
⊢ ( ( ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑚 ) ) ∪ ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑌 ) ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) → ( ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑚 ) ) ∪ ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑌 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) |
| 370 |
368 369
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑚 ) ) ∪ ( ( bday ‘ 𝑟 ) +no ( bday ‘ 𝑌 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) |
| 371 |
296 305 298 324 370
|
addsproplem1 |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( ( 𝑟 +s 𝑚 ) ∈ No ∧ ( 𝑚 <s 𝑌 → ( 𝑚 +s 𝑟 ) <s ( 𝑌 +s 𝑟 ) ) ) ) |
| 372 |
371
|
simprd |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( 𝑚 <s 𝑌 → ( 𝑚 +s 𝑟 ) <s ( 𝑌 +s 𝑟 ) ) ) |
| 373 |
361 372
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( 𝑚 +s 𝑟 ) <s ( 𝑌 +s 𝑟 ) ) |
| 374 |
305 298
|
addscomd |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( 𝑟 +s 𝑚 ) = ( 𝑚 +s 𝑟 ) ) |
| 375 |
305 324
|
addscomd |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( 𝑟 +s 𝑌 ) = ( 𝑌 +s 𝑟 ) ) |
| 376 |
373 374 375
|
3brtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( 𝑟 +s 𝑚 ) <s ( 𝑟 +s 𝑌 ) ) |
| 377 |
304 323 329 354 376
|
slttrd |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( 𝑋 +s 𝑚 ) <s ( 𝑟 +s 𝑌 ) ) |
| 378 |
|
breq12 |
⊢ ( ( 𝑎 = ( 𝑋 +s 𝑚 ) ∧ 𝑏 = ( 𝑟 +s 𝑌 ) ) → ( 𝑎 <s 𝑏 ↔ ( 𝑋 +s 𝑚 ) <s ( 𝑟 +s 𝑌 ) ) ) |
| 379 |
377 378
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑟 ∈ ( R ‘ 𝑋 ) ) ) → ( ( 𝑎 = ( 𝑋 +s 𝑚 ) ∧ 𝑏 = ( 𝑟 +s 𝑌 ) ) → 𝑎 <s 𝑏 ) ) |
| 380 |
379
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑚 ∈ ( L ‘ 𝑌 ) ∃ 𝑟 ∈ ( R ‘ 𝑋 ) ( 𝑎 = ( 𝑋 +s 𝑚 ) ∧ 𝑏 = ( 𝑟 +s 𝑌 ) ) → 𝑎 <s 𝑏 ) ) |
| 381 |
295 380
|
biimtrrid |
⊢ ( 𝜑 → ( ( ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑎 = ( 𝑋 +s 𝑚 ) ∧ ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑏 = ( 𝑟 +s 𝑌 ) ) → 𝑎 <s 𝑏 ) ) |
| 382 |
|
reeanv |
⊢ ( ∃ 𝑚 ∈ ( L ‘ 𝑌 ) ∃ 𝑠 ∈ ( R ‘ 𝑌 ) ( 𝑎 = ( 𝑋 +s 𝑚 ) ∧ 𝑏 = ( 𝑋 +s 𝑠 ) ) ↔ ( ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑎 = ( 𝑋 +s 𝑚 ) ∧ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑏 = ( 𝑋 +s 𝑠 ) ) ) |
| 383 |
|
lltropt |
⊢ ( L ‘ 𝑌 ) <<s ( R ‘ 𝑌 ) |
| 384 |
383
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( L ‘ 𝑌 ) <<s ( R ‘ 𝑌 ) ) |
| 385 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → 𝑚 ∈ ( L ‘ 𝑌 ) ) |
| 386 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → 𝑠 ∈ ( R ‘ 𝑌 ) ) |
| 387 |
384 385 386
|
ssltsepcd |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → 𝑚 <s 𝑠 ) |
| 388 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ∀ 𝑧 ∈ No ( ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) ) |
| 389 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → 𝑋 ∈ No ) |
| 390 |
60
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → 𝑚 ∈ No ) |
| 391 |
131
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → 𝑠 ∈ No ) |
| 392 |
81
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
| 393 |
148
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
| 394 |
|
naddcl |
⊢ ( ( ( bday ‘ 𝑋 ) ∈ On ∧ ( bday ‘ 𝑚 ) ∈ On ) → ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ∈ On ) |
| 395 |
40 68 394
|
mp2an |
⊢ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ∈ On |
| 396 |
|
naddcl |
⊢ ( ( ( bday ‘ 𝑋 ) ∈ On ∧ ( bday ‘ 𝑠 ) ∈ On ) → ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) ∈ On ) |
| 397 |
40 135 396
|
mp2an |
⊢ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) ∈ On |
| 398 |
|
onunel |
⊢ ( ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ∈ On ∧ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) ∈ On ∧ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∈ On ) → ( ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ↔ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∧ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) ) ) |
| 399 |
395 397 206 398
|
mp3an |
⊢ ( ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ↔ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∧ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) ) |
| 400 |
392 393 399
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
| 401 |
|
elun1 |
⊢ ( ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) → ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) |
| 402 |
400 401
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑠 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) |
| 403 |
388 389 390 391 402
|
addsproplem1 |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( ( 𝑋 +s 𝑚 ) ∈ No ∧ ( 𝑚 <s 𝑠 → ( 𝑚 +s 𝑋 ) <s ( 𝑠 +s 𝑋 ) ) ) ) |
| 404 |
403
|
simprd |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( 𝑚 <s 𝑠 → ( 𝑚 +s 𝑋 ) <s ( 𝑠 +s 𝑋 ) ) ) |
| 405 |
387 404
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( 𝑚 +s 𝑋 ) <s ( 𝑠 +s 𝑋 ) ) |
| 406 |
389 390
|
addscomd |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( 𝑋 +s 𝑚 ) = ( 𝑚 +s 𝑋 ) ) |
| 407 |
389 391
|
addscomd |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( 𝑋 +s 𝑠 ) = ( 𝑠 +s 𝑋 ) ) |
| 408 |
405 406 407
|
3brtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( 𝑋 +s 𝑚 ) <s ( 𝑋 +s 𝑠 ) ) |
| 409 |
|
breq12 |
⊢ ( ( 𝑎 = ( 𝑋 +s 𝑚 ) ∧ 𝑏 = ( 𝑋 +s 𝑠 ) ) → ( 𝑎 <s 𝑏 ↔ ( 𝑋 +s 𝑚 ) <s ( 𝑋 +s 𝑠 ) ) ) |
| 410 |
408 409
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( L ‘ 𝑌 ) ∧ 𝑠 ∈ ( R ‘ 𝑌 ) ) ) → ( ( 𝑎 = ( 𝑋 +s 𝑚 ) ∧ 𝑏 = ( 𝑋 +s 𝑠 ) ) → 𝑎 <s 𝑏 ) ) |
| 411 |
410
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑚 ∈ ( L ‘ 𝑌 ) ∃ 𝑠 ∈ ( R ‘ 𝑌 ) ( 𝑎 = ( 𝑋 +s 𝑚 ) ∧ 𝑏 = ( 𝑋 +s 𝑠 ) ) → 𝑎 <s 𝑏 ) ) |
| 412 |
382 411
|
biimtrrid |
⊢ ( 𝜑 → ( ( ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑎 = ( 𝑋 +s 𝑚 ) ∧ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑏 = ( 𝑋 +s 𝑠 ) ) → 𝑎 <s 𝑏 ) ) |
| 413 |
381 412
|
jaod |
⊢ ( 𝜑 → ( ( ( ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑎 = ( 𝑋 +s 𝑚 ) ∧ ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑏 = ( 𝑟 +s 𝑌 ) ) ∨ ( ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑎 = ( 𝑋 +s 𝑚 ) ∧ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑏 = ( 𝑋 +s 𝑠 ) ) ) → 𝑎 <s 𝑏 ) ) |
| 414 |
294 413
|
jaod |
⊢ ( 𝜑 → ( ( ( ( ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑎 = ( 𝑙 +s 𝑌 ) ∧ ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑏 = ( 𝑟 +s 𝑌 ) ) ∨ ( ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑎 = ( 𝑙 +s 𝑌 ) ∧ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑏 = ( 𝑋 +s 𝑠 ) ) ) ∨ ( ( ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑎 = ( 𝑋 +s 𝑚 ) ∧ ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑏 = ( 𝑟 +s 𝑌 ) ) ∨ ( ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑎 = ( 𝑋 +s 𝑚 ) ∧ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑏 = ( 𝑋 +s 𝑠 ) ) ) ) → 𝑎 <s 𝑏 ) ) |
| 415 |
182 414
|
biimtrid |
⊢ ( 𝜑 → ( ( 𝑎 ∈ ( { 𝑝 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑝 = ( 𝑙 +s 𝑌 ) } ∪ { 𝑞 ∣ ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑞 = ( 𝑋 +s 𝑚 ) } ) ∧ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑤 = ( 𝑟 +s 𝑌 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑡 = ( 𝑋 +s 𝑠 ) } ) ) → 𝑎 <s 𝑏 ) ) |
| 416 |
415
|
3impib |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( { 𝑝 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑝 = ( 𝑙 +s 𝑌 ) } ∪ { 𝑞 ∣ ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑞 = ( 𝑋 +s 𝑚 ) } ) ∧ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑤 = ( 𝑟 +s 𝑌 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑡 = ( 𝑋 +s 𝑠 ) } ) ) → 𝑎 <s 𝑏 ) |
| 417 |
10 17 92 159 416
|
ssltd |
⊢ ( 𝜑 → ( { 𝑝 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑝 = ( 𝑙 +s 𝑌 ) } ∪ { 𝑞 ∣ ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑞 = ( 𝑋 +s 𝑚 ) } ) <<s ( { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑤 = ( 𝑟 +s 𝑌 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑡 = ( 𝑋 +s 𝑠 ) } ) ) |