Metamath Proof Explorer


Theorem addsproplem4

Description: Lemma for surreal addition properties. Show the second half of the inductive hypothesis when Y is older than Z . (Contributed by Scott Fenton, 21-Jan-2025)

Ref Expression
Hypotheses addsproplem.1 ( 𝜑 → ∀ 𝑥 No 𝑦 No 𝑧 No ( ( ( ( bday 𝑥 ) +no ( bday 𝑦 ) ) ∪ ( ( bday 𝑥 ) +no ( bday 𝑧 ) ) ) ∈ ( ( ( bday 𝑋 ) +no ( bday 𝑌 ) ) ∪ ( ( bday 𝑋 ) +no ( bday 𝑍 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) )
addspropord.2 ( 𝜑𝑋 No )
addspropord.3 ( 𝜑𝑌 No )
addspropord.4 ( 𝜑𝑍 No )
addspropord.5 ( 𝜑𝑌 <s 𝑍 )
addsproplem4.6 ( 𝜑 → ( bday 𝑌 ) ∈ ( bday 𝑍 ) )
Assertion addsproplem4 ( 𝜑 → ( 𝑌 +s 𝑋 ) <s ( 𝑍 +s 𝑋 ) )

Proof

Step Hyp Ref Expression
1 addsproplem.1 ( 𝜑 → ∀ 𝑥 No 𝑦 No 𝑧 No ( ( ( ( bday 𝑥 ) +no ( bday 𝑦 ) ) ∪ ( ( bday 𝑥 ) +no ( bday 𝑧 ) ) ) ∈ ( ( ( bday 𝑋 ) +no ( bday 𝑌 ) ) ∪ ( ( bday 𝑋 ) +no ( bday 𝑍 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) )
2 addspropord.2 ( 𝜑𝑋 No )
3 addspropord.3 ( 𝜑𝑌 No )
4 addspropord.4 ( 𝜑𝑍 No )
5 addspropord.5 ( 𝜑𝑌 <s 𝑍 )
6 addsproplem4.6 ( 𝜑 → ( bday 𝑌 ) ∈ ( bday 𝑍 ) )
7 uncom ( ( ( bday 𝑋 ) +no ( bday 𝑌 ) ) ∪ ( ( bday 𝑋 ) +no ( bday 𝑍 ) ) ) = ( ( ( bday 𝑋 ) +no ( bday 𝑍 ) ) ∪ ( ( bday 𝑋 ) +no ( bday 𝑌 ) ) )
8 7 eleq2i ( ( ( ( bday 𝑥 ) +no ( bday 𝑦 ) ) ∪ ( ( bday 𝑥 ) +no ( bday 𝑧 ) ) ) ∈ ( ( ( bday 𝑋 ) +no ( bday 𝑌 ) ) ∪ ( ( bday 𝑋 ) +no ( bday 𝑍 ) ) ) ↔ ( ( ( bday 𝑥 ) +no ( bday 𝑦 ) ) ∪ ( ( bday 𝑥 ) +no ( bday 𝑧 ) ) ) ∈ ( ( ( bday 𝑋 ) +no ( bday 𝑍 ) ) ∪ ( ( bday 𝑋 ) +no ( bday 𝑌 ) ) ) )
9 8 imbi1i ( ( ( ( ( bday 𝑥 ) +no ( bday 𝑦 ) ) ∪ ( ( bday 𝑥 ) +no ( bday 𝑧 ) ) ) ∈ ( ( ( bday 𝑋 ) +no ( bday 𝑌 ) ) ∪ ( ( bday 𝑋 ) +no ( bday 𝑍 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) ↔ ( ( ( ( bday 𝑥 ) +no ( bday 𝑦 ) ) ∪ ( ( bday 𝑥 ) +no ( bday 𝑧 ) ) ) ∈ ( ( ( bday 𝑋 ) +no ( bday 𝑍 ) ) ∪ ( ( bday 𝑋 ) +no ( bday 𝑌 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) )
10 9 ralbii ( ∀ 𝑧 No ( ( ( ( bday 𝑥 ) +no ( bday 𝑦 ) ) ∪ ( ( bday 𝑥 ) +no ( bday 𝑧 ) ) ) ∈ ( ( ( bday 𝑋 ) +no ( bday 𝑌 ) ) ∪ ( ( bday 𝑋 ) +no ( bday 𝑍 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) ↔ ∀ 𝑧 No ( ( ( ( bday 𝑥 ) +no ( bday 𝑦 ) ) ∪ ( ( bday 𝑥 ) +no ( bday 𝑧 ) ) ) ∈ ( ( ( bday 𝑋 ) +no ( bday 𝑍 ) ) ∪ ( ( bday 𝑋 ) +no ( bday 𝑌 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) )
11 10 2ralbii ( ∀ 𝑥 No 𝑦 No 𝑧 No ( ( ( ( bday 𝑥 ) +no ( bday 𝑦 ) ) ∪ ( ( bday 𝑥 ) +no ( bday 𝑧 ) ) ) ∈ ( ( ( bday 𝑋 ) +no ( bday 𝑌 ) ) ∪ ( ( bday 𝑋 ) +no ( bday 𝑍 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) ↔ ∀ 𝑥 No 𝑦 No 𝑧 No ( ( ( ( bday 𝑥 ) +no ( bday 𝑦 ) ) ∪ ( ( bday 𝑥 ) +no ( bday 𝑧 ) ) ) ∈ ( ( ( bday 𝑋 ) +no ( bday 𝑍 ) ) ∪ ( ( bday 𝑋 ) +no ( bday 𝑌 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) )
12 1 11 sylib ( 𝜑 → ∀ 𝑥 No 𝑦 No 𝑧 No ( ( ( ( bday 𝑥 ) +no ( bday 𝑦 ) ) ∪ ( ( bday 𝑥 ) +no ( bday 𝑧 ) ) ) ∈ ( ( ( bday 𝑋 ) +no ( bday 𝑍 ) ) ∪ ( ( bday 𝑋 ) +no ( bday 𝑌 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) )
13 12 2 4 addsproplem3 ( 𝜑 → ( ( 𝑋 +s 𝑍 ) ∈ No ∧ ( { 𝑎 ∣ ∃ 𝑐 ∈ ( L ‘ 𝑋 ) 𝑎 = ( 𝑐 +s 𝑍 ) } ∪ { 𝑏 ∣ ∃ 𝑑 ∈ ( L ‘ 𝑍 ) 𝑏 = ( 𝑋 +s 𝑑 ) } ) <<s { ( 𝑋 +s 𝑍 ) } ∧ { ( 𝑋 +s 𝑍 ) } <<s ( { 𝑒 ∣ ∃ 𝑔 ∈ ( R ‘ 𝑋 ) 𝑒 = ( 𝑔 +s 𝑍 ) } ∪ { 𝑓 ∣ ∃ ∈ ( R ‘ 𝑍 ) 𝑓 = ( 𝑋 +s ) } ) ) )
14 13 simp2d ( 𝜑 → ( { 𝑎 ∣ ∃ 𝑐 ∈ ( L ‘ 𝑋 ) 𝑎 = ( 𝑐 +s 𝑍 ) } ∪ { 𝑏 ∣ ∃ 𝑑 ∈ ( L ‘ 𝑍 ) 𝑏 = ( 𝑋 +s 𝑑 ) } ) <<s { ( 𝑋 +s 𝑍 ) } )
15 bdayelon ( bday 𝑍 ) ∈ On
16 oldbday ( ( ( bday 𝑍 ) ∈ On ∧ 𝑌 No ) → ( 𝑌 ∈ ( O ‘ ( bday 𝑍 ) ) ↔ ( bday 𝑌 ) ∈ ( bday 𝑍 ) ) )
17 15 3 16 sylancr ( 𝜑 → ( 𝑌 ∈ ( O ‘ ( bday 𝑍 ) ) ↔ ( bday 𝑌 ) ∈ ( bday 𝑍 ) ) )
18 6 17 mpbird ( 𝜑𝑌 ∈ ( O ‘ ( bday 𝑍 ) ) )
19 breq1 ( 𝑦 = 𝑌 → ( 𝑦 <s 𝑍𝑌 <s 𝑍 ) )
20 leftval ( L ‘ 𝑍 ) = { 𝑦 ∈ ( O ‘ ( bday 𝑍 ) ) ∣ 𝑦 <s 𝑍 }
21 19 20 elrab2 ( 𝑌 ∈ ( L ‘ 𝑍 ) ↔ ( 𝑌 ∈ ( O ‘ ( bday 𝑍 ) ) ∧ 𝑌 <s 𝑍 ) )
22 18 5 21 sylanbrc ( 𝜑𝑌 ∈ ( L ‘ 𝑍 ) )
23 eqid ( 𝑋 +s 𝑌 ) = ( 𝑋 +s 𝑌 )
24 oveq2 ( 𝑑 = 𝑌 → ( 𝑋 +s 𝑑 ) = ( 𝑋 +s 𝑌 ) )
25 24 rspceeqv ( ( 𝑌 ∈ ( L ‘ 𝑍 ) ∧ ( 𝑋 +s 𝑌 ) = ( 𝑋 +s 𝑌 ) ) → ∃ 𝑑 ∈ ( L ‘ 𝑍 ) ( 𝑋 +s 𝑌 ) = ( 𝑋 +s 𝑑 ) )
26 22 23 25 sylancl ( 𝜑 → ∃ 𝑑 ∈ ( L ‘ 𝑍 ) ( 𝑋 +s 𝑌 ) = ( 𝑋 +s 𝑑 ) )
27 ovex ( 𝑋 +s 𝑌 ) ∈ V
28 eqeq1 ( 𝑏 = ( 𝑋 +s 𝑌 ) → ( 𝑏 = ( 𝑋 +s 𝑑 ) ↔ ( 𝑋 +s 𝑌 ) = ( 𝑋 +s 𝑑 ) ) )
29 28 rexbidv ( 𝑏 = ( 𝑋 +s 𝑌 ) → ( ∃ 𝑑 ∈ ( L ‘ 𝑍 ) 𝑏 = ( 𝑋 +s 𝑑 ) ↔ ∃ 𝑑 ∈ ( L ‘ 𝑍 ) ( 𝑋 +s 𝑌 ) = ( 𝑋 +s 𝑑 ) ) )
30 27 29 elab ( ( 𝑋 +s 𝑌 ) ∈ { 𝑏 ∣ ∃ 𝑑 ∈ ( L ‘ 𝑍 ) 𝑏 = ( 𝑋 +s 𝑑 ) } ↔ ∃ 𝑑 ∈ ( L ‘ 𝑍 ) ( 𝑋 +s 𝑌 ) = ( 𝑋 +s 𝑑 ) )
31 26 30 sylibr ( 𝜑 → ( 𝑋 +s 𝑌 ) ∈ { 𝑏 ∣ ∃ 𝑑 ∈ ( L ‘ 𝑍 ) 𝑏 = ( 𝑋 +s 𝑑 ) } )
32 elun2 ( ( 𝑋 +s 𝑌 ) ∈ { 𝑏 ∣ ∃ 𝑑 ∈ ( L ‘ 𝑍 ) 𝑏 = ( 𝑋 +s 𝑑 ) } → ( 𝑋 +s 𝑌 ) ∈ ( { 𝑎 ∣ ∃ 𝑐 ∈ ( L ‘ 𝑋 ) 𝑎 = ( 𝑐 +s 𝑍 ) } ∪ { 𝑏 ∣ ∃ 𝑑 ∈ ( L ‘ 𝑍 ) 𝑏 = ( 𝑋 +s 𝑑 ) } ) )
33 31 32 syl ( 𝜑 → ( 𝑋 +s 𝑌 ) ∈ ( { 𝑎 ∣ ∃ 𝑐 ∈ ( L ‘ 𝑋 ) 𝑎 = ( 𝑐 +s 𝑍 ) } ∪ { 𝑏 ∣ ∃ 𝑑 ∈ ( L ‘ 𝑍 ) 𝑏 = ( 𝑋 +s 𝑑 ) } ) )
34 ovex ( 𝑋 +s 𝑍 ) ∈ V
35 34 snid ( 𝑋 +s 𝑍 ) ∈ { ( 𝑋 +s 𝑍 ) }
36 35 a1i ( 𝜑 → ( 𝑋 +s 𝑍 ) ∈ { ( 𝑋 +s 𝑍 ) } )
37 14 33 36 ssltsepcd ( 𝜑 → ( 𝑋 +s 𝑌 ) <s ( 𝑋 +s 𝑍 ) )
38 3 2 addscomd ( 𝜑 → ( 𝑌 +s 𝑋 ) = ( 𝑋 +s 𝑌 ) )
39 4 2 addscomd ( 𝜑 → ( 𝑍 +s 𝑋 ) = ( 𝑋 +s 𝑍 ) )
40 37 38 39 3brtr4d ( 𝜑 → ( 𝑌 +s 𝑋 ) <s ( 𝑍 +s 𝑋 ) )