Step |
Hyp |
Ref |
Expression |
1 |
|
addsproplem.1 |
⊢ ( 𝜑 → ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ∀ 𝑧 ∈ No ( ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) ) |
2 |
|
addspropord.2 |
⊢ ( 𝜑 → 𝑋 ∈ No ) |
3 |
|
addspropord.3 |
⊢ ( 𝜑 → 𝑌 ∈ No ) |
4 |
|
addspropord.4 |
⊢ ( 𝜑 → 𝑍 ∈ No ) |
5 |
|
addspropord.5 |
⊢ ( 𝜑 → 𝑌 <s 𝑍 ) |
6 |
|
addsproplem4.6 |
⊢ ( 𝜑 → ( bday ‘ 𝑌 ) ∈ ( bday ‘ 𝑍 ) ) |
7 |
|
uncom |
⊢ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) = ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
8 |
7
|
eleq2i |
⊢ ( ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ↔ ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) ) |
9 |
8
|
imbi1i |
⊢ ( ( ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) ↔ ( ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) ) |
10 |
9
|
ralbii |
⊢ ( ∀ 𝑧 ∈ No ( ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) ↔ ∀ 𝑧 ∈ No ( ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) ) |
11 |
10
|
2ralbii |
⊢ ( ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ∀ 𝑧 ∈ No ( ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) ↔ ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ∀ 𝑧 ∈ No ( ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) ) |
12 |
1 11
|
sylib |
⊢ ( 𝜑 → ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ∀ 𝑧 ∈ No ( ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) ) |
13 |
12 2 4
|
addsproplem3 |
⊢ ( 𝜑 → ( ( 𝑋 +s 𝑍 ) ∈ No ∧ ( { 𝑎 ∣ ∃ 𝑐 ∈ ( L ‘ 𝑋 ) 𝑎 = ( 𝑐 +s 𝑍 ) } ∪ { 𝑏 ∣ ∃ 𝑑 ∈ ( L ‘ 𝑍 ) 𝑏 = ( 𝑋 +s 𝑑 ) } ) <<s { ( 𝑋 +s 𝑍 ) } ∧ { ( 𝑋 +s 𝑍 ) } <<s ( { 𝑒 ∣ ∃ 𝑔 ∈ ( R ‘ 𝑋 ) 𝑒 = ( 𝑔 +s 𝑍 ) } ∪ { 𝑓 ∣ ∃ ℎ ∈ ( R ‘ 𝑍 ) 𝑓 = ( 𝑋 +s ℎ ) } ) ) ) |
14 |
13
|
simp2d |
⊢ ( 𝜑 → ( { 𝑎 ∣ ∃ 𝑐 ∈ ( L ‘ 𝑋 ) 𝑎 = ( 𝑐 +s 𝑍 ) } ∪ { 𝑏 ∣ ∃ 𝑑 ∈ ( L ‘ 𝑍 ) 𝑏 = ( 𝑋 +s 𝑑 ) } ) <<s { ( 𝑋 +s 𝑍 ) } ) |
15 |
|
bdayelon |
⊢ ( bday ‘ 𝑍 ) ∈ On |
16 |
|
oldbday |
⊢ ( ( ( bday ‘ 𝑍 ) ∈ On ∧ 𝑌 ∈ No ) → ( 𝑌 ∈ ( O ‘ ( bday ‘ 𝑍 ) ) ↔ ( bday ‘ 𝑌 ) ∈ ( bday ‘ 𝑍 ) ) ) |
17 |
15 3 16
|
sylancr |
⊢ ( 𝜑 → ( 𝑌 ∈ ( O ‘ ( bday ‘ 𝑍 ) ) ↔ ( bday ‘ 𝑌 ) ∈ ( bday ‘ 𝑍 ) ) ) |
18 |
6 17
|
mpbird |
⊢ ( 𝜑 → 𝑌 ∈ ( O ‘ ( bday ‘ 𝑍 ) ) ) |
19 |
|
breq1 |
⊢ ( 𝑦 = 𝑌 → ( 𝑦 <s 𝑍 ↔ 𝑌 <s 𝑍 ) ) |
20 |
|
leftval |
⊢ ( L ‘ 𝑍 ) = { 𝑦 ∈ ( O ‘ ( bday ‘ 𝑍 ) ) ∣ 𝑦 <s 𝑍 } |
21 |
19 20
|
elrab2 |
⊢ ( 𝑌 ∈ ( L ‘ 𝑍 ) ↔ ( 𝑌 ∈ ( O ‘ ( bday ‘ 𝑍 ) ) ∧ 𝑌 <s 𝑍 ) ) |
22 |
18 5 21
|
sylanbrc |
⊢ ( 𝜑 → 𝑌 ∈ ( L ‘ 𝑍 ) ) |
23 |
|
eqid |
⊢ ( 𝑋 +s 𝑌 ) = ( 𝑋 +s 𝑌 ) |
24 |
|
oveq2 |
⊢ ( 𝑑 = 𝑌 → ( 𝑋 +s 𝑑 ) = ( 𝑋 +s 𝑌 ) ) |
25 |
24
|
rspceeqv |
⊢ ( ( 𝑌 ∈ ( L ‘ 𝑍 ) ∧ ( 𝑋 +s 𝑌 ) = ( 𝑋 +s 𝑌 ) ) → ∃ 𝑑 ∈ ( L ‘ 𝑍 ) ( 𝑋 +s 𝑌 ) = ( 𝑋 +s 𝑑 ) ) |
26 |
22 23 25
|
sylancl |
⊢ ( 𝜑 → ∃ 𝑑 ∈ ( L ‘ 𝑍 ) ( 𝑋 +s 𝑌 ) = ( 𝑋 +s 𝑑 ) ) |
27 |
|
ovex |
⊢ ( 𝑋 +s 𝑌 ) ∈ V |
28 |
|
eqeq1 |
⊢ ( 𝑏 = ( 𝑋 +s 𝑌 ) → ( 𝑏 = ( 𝑋 +s 𝑑 ) ↔ ( 𝑋 +s 𝑌 ) = ( 𝑋 +s 𝑑 ) ) ) |
29 |
28
|
rexbidv |
⊢ ( 𝑏 = ( 𝑋 +s 𝑌 ) → ( ∃ 𝑑 ∈ ( L ‘ 𝑍 ) 𝑏 = ( 𝑋 +s 𝑑 ) ↔ ∃ 𝑑 ∈ ( L ‘ 𝑍 ) ( 𝑋 +s 𝑌 ) = ( 𝑋 +s 𝑑 ) ) ) |
30 |
27 29
|
elab |
⊢ ( ( 𝑋 +s 𝑌 ) ∈ { 𝑏 ∣ ∃ 𝑑 ∈ ( L ‘ 𝑍 ) 𝑏 = ( 𝑋 +s 𝑑 ) } ↔ ∃ 𝑑 ∈ ( L ‘ 𝑍 ) ( 𝑋 +s 𝑌 ) = ( 𝑋 +s 𝑑 ) ) |
31 |
26 30
|
sylibr |
⊢ ( 𝜑 → ( 𝑋 +s 𝑌 ) ∈ { 𝑏 ∣ ∃ 𝑑 ∈ ( L ‘ 𝑍 ) 𝑏 = ( 𝑋 +s 𝑑 ) } ) |
32 |
|
elun2 |
⊢ ( ( 𝑋 +s 𝑌 ) ∈ { 𝑏 ∣ ∃ 𝑑 ∈ ( L ‘ 𝑍 ) 𝑏 = ( 𝑋 +s 𝑑 ) } → ( 𝑋 +s 𝑌 ) ∈ ( { 𝑎 ∣ ∃ 𝑐 ∈ ( L ‘ 𝑋 ) 𝑎 = ( 𝑐 +s 𝑍 ) } ∪ { 𝑏 ∣ ∃ 𝑑 ∈ ( L ‘ 𝑍 ) 𝑏 = ( 𝑋 +s 𝑑 ) } ) ) |
33 |
31 32
|
syl |
⊢ ( 𝜑 → ( 𝑋 +s 𝑌 ) ∈ ( { 𝑎 ∣ ∃ 𝑐 ∈ ( L ‘ 𝑋 ) 𝑎 = ( 𝑐 +s 𝑍 ) } ∪ { 𝑏 ∣ ∃ 𝑑 ∈ ( L ‘ 𝑍 ) 𝑏 = ( 𝑋 +s 𝑑 ) } ) ) |
34 |
|
ovex |
⊢ ( 𝑋 +s 𝑍 ) ∈ V |
35 |
34
|
snid |
⊢ ( 𝑋 +s 𝑍 ) ∈ { ( 𝑋 +s 𝑍 ) } |
36 |
35
|
a1i |
⊢ ( 𝜑 → ( 𝑋 +s 𝑍 ) ∈ { ( 𝑋 +s 𝑍 ) } ) |
37 |
14 33 36
|
ssltsepcd |
⊢ ( 𝜑 → ( 𝑋 +s 𝑌 ) <s ( 𝑋 +s 𝑍 ) ) |
38 |
3 2
|
addscomd |
⊢ ( 𝜑 → ( 𝑌 +s 𝑋 ) = ( 𝑋 +s 𝑌 ) ) |
39 |
4 2
|
addscomd |
⊢ ( 𝜑 → ( 𝑍 +s 𝑋 ) = ( 𝑋 +s 𝑍 ) ) |
40 |
37 38 39
|
3brtr4d |
⊢ ( 𝜑 → ( 𝑌 +s 𝑋 ) <s ( 𝑍 +s 𝑋 ) ) |