Metamath Proof Explorer


Theorem addsproplem6

Description: Lemma for surreal addition properties. Finally, we show the second half of the induction hypothesis when Y and Z are the same age. (Contributed by Scott Fenton, 21-Jan-2025)

Ref Expression
Hypotheses addsproplem.1 ( 𝜑 → ∀ 𝑥 No 𝑦 No 𝑧 No ( ( ( ( bday 𝑥 ) +no ( bday 𝑦 ) ) ∪ ( ( bday 𝑥 ) +no ( bday 𝑧 ) ) ) ∈ ( ( ( bday 𝑋 ) +no ( bday 𝑌 ) ) ∪ ( ( bday 𝑋 ) +no ( bday 𝑍 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) )
addspropord.2 ( 𝜑𝑋 No )
addspropord.3 ( 𝜑𝑌 No )
addspropord.4 ( 𝜑𝑍 No )
addspropord.5 ( 𝜑𝑌 <s 𝑍 )
addsproplem6.6 ( 𝜑 → ( bday 𝑌 ) = ( bday 𝑍 ) )
Assertion addsproplem6 ( 𝜑 → ( 𝑌 +s 𝑋 ) <s ( 𝑍 +s 𝑋 ) )

Proof

Step Hyp Ref Expression
1 addsproplem.1 ( 𝜑 → ∀ 𝑥 No 𝑦 No 𝑧 No ( ( ( ( bday 𝑥 ) +no ( bday 𝑦 ) ) ∪ ( ( bday 𝑥 ) +no ( bday 𝑧 ) ) ) ∈ ( ( ( bday 𝑋 ) +no ( bday 𝑌 ) ) ∪ ( ( bday 𝑋 ) +no ( bday 𝑍 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) )
2 addspropord.2 ( 𝜑𝑋 No )
3 addspropord.3 ( 𝜑𝑌 No )
4 addspropord.4 ( 𝜑𝑍 No )
5 addspropord.5 ( 𝜑𝑌 <s 𝑍 )
6 addsproplem6.6 ( 𝜑 → ( bday 𝑌 ) = ( bday 𝑍 ) )
7 nodense ( ( ( 𝑌 No 𝑍 No ) ∧ ( ( bday 𝑌 ) = ( bday 𝑍 ) ∧ 𝑌 <s 𝑍 ) ) → ∃ 𝑚 No ( ( bday 𝑚 ) ∈ ( bday 𝑌 ) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍 ) )
8 3 4 6 5 7 syl22anc ( 𝜑 → ∃ 𝑚 No ( ( bday 𝑚 ) ∈ ( bday 𝑌 ) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍 ) )
9 1 2 3 addsproplem3 ( 𝜑 → ( ( 𝑋 +s 𝑌 ) ∈ No ∧ ( { 𝑎 ∣ ∃ 𝑏 ∈ ( L ‘ 𝑋 ) 𝑎 = ( 𝑏 +s 𝑌 ) } ∪ { 𝑐 ∣ ∃ 𝑑 ∈ ( L ‘ 𝑌 ) 𝑐 = ( 𝑋 +s 𝑑 ) } ) <<s { ( 𝑋 +s 𝑌 ) } ∧ { ( 𝑋 +s 𝑌 ) } <<s ( { 𝑒 ∣ ∃ 𝑓 ∈ ( R ‘ 𝑋 ) 𝑒 = ( 𝑓 +s 𝑌 ) } ∪ { 𝑔 ∣ ∃ ∈ ( R ‘ 𝑌 ) 𝑔 = ( 𝑋 +s ) } ) ) )
10 9 simp1d ( 𝜑 → ( 𝑋 +s 𝑌 ) ∈ No )
11 10 adantr ( ( 𝜑 ∧ ( 𝑚 No ∧ ( ( bday 𝑚 ) ∈ ( bday 𝑌 ) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍 ) ) ) → ( 𝑋 +s 𝑌 ) ∈ No )
12 1 adantr ( ( 𝜑 ∧ ( 𝑚 No ∧ ( ( bday 𝑚 ) ∈ ( bday 𝑌 ) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍 ) ) ) → ∀ 𝑥 No 𝑦 No 𝑧 No ( ( ( ( bday 𝑥 ) +no ( bday 𝑦 ) ) ∪ ( ( bday 𝑥 ) +no ( bday 𝑧 ) ) ) ∈ ( ( ( bday 𝑋 ) +no ( bday 𝑌 ) ) ∪ ( ( bday 𝑋 ) +no ( bday 𝑍 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) )
13 2 adantr ( ( 𝜑 ∧ ( 𝑚 No ∧ ( ( bday 𝑚 ) ∈ ( bday 𝑌 ) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍 ) ) ) → 𝑋 No )
14 simprl ( ( 𝜑 ∧ ( 𝑚 No ∧ ( ( bday 𝑚 ) ∈ ( bday 𝑌 ) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍 ) ) ) → 𝑚 No )
15 unidm ( ( ( bday 𝑋 ) +no ( bday 𝑚 ) ) ∪ ( ( bday 𝑋 ) +no ( bday 𝑚 ) ) ) = ( ( bday 𝑋 ) +no ( bday 𝑚 ) )
16 simprr1 ( ( 𝜑 ∧ ( 𝑚 No ∧ ( ( bday 𝑚 ) ∈ ( bday 𝑌 ) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍 ) ) ) → ( bday 𝑚 ) ∈ ( bday 𝑌 ) )
17 bdayelon ( bday 𝑚 ) ∈ On
18 bdayelon ( bday 𝑌 ) ∈ On
19 bdayelon ( bday 𝑋 ) ∈ On
20 naddel2 ( ( ( bday 𝑚 ) ∈ On ∧ ( bday 𝑌 ) ∈ On ∧ ( bday 𝑋 ) ∈ On ) → ( ( bday 𝑚 ) ∈ ( bday 𝑌 ) ↔ ( ( bday 𝑋 ) +no ( bday 𝑚 ) ) ∈ ( ( bday 𝑋 ) +no ( bday 𝑌 ) ) ) )
21 17 18 19 20 mp3an ( ( bday 𝑚 ) ∈ ( bday 𝑌 ) ↔ ( ( bday 𝑋 ) +no ( bday 𝑚 ) ) ∈ ( ( bday 𝑋 ) +no ( bday 𝑌 ) ) )
22 16 21 sylib ( ( 𝜑 ∧ ( 𝑚 No ∧ ( ( bday 𝑚 ) ∈ ( bday 𝑌 ) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍 ) ) ) → ( ( bday 𝑋 ) +no ( bday 𝑚 ) ) ∈ ( ( bday 𝑋 ) +no ( bday 𝑌 ) ) )
23 elun1 ( ( ( bday 𝑋 ) +no ( bday 𝑚 ) ) ∈ ( ( bday 𝑋 ) +no ( bday 𝑌 ) ) → ( ( bday 𝑋 ) +no ( bday 𝑚 ) ) ∈ ( ( ( bday 𝑋 ) +no ( bday 𝑌 ) ) ∪ ( ( bday 𝑋 ) +no ( bday 𝑍 ) ) ) )
24 22 23 syl ( ( 𝜑 ∧ ( 𝑚 No ∧ ( ( bday 𝑚 ) ∈ ( bday 𝑌 ) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍 ) ) ) → ( ( bday 𝑋 ) +no ( bday 𝑚 ) ) ∈ ( ( ( bday 𝑋 ) +no ( bday 𝑌 ) ) ∪ ( ( bday 𝑋 ) +no ( bday 𝑍 ) ) ) )
25 15 24 eqeltrid ( ( 𝜑 ∧ ( 𝑚 No ∧ ( ( bday 𝑚 ) ∈ ( bday 𝑌 ) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍 ) ) ) → ( ( ( bday 𝑋 ) +no ( bday 𝑚 ) ) ∪ ( ( bday 𝑋 ) +no ( bday 𝑚 ) ) ) ∈ ( ( ( bday 𝑋 ) +no ( bday 𝑌 ) ) ∪ ( ( bday 𝑋 ) +no ( bday 𝑍 ) ) ) )
26 12 13 14 14 25 addsproplem1 ( ( 𝜑 ∧ ( 𝑚 No ∧ ( ( bday 𝑚 ) ∈ ( bday 𝑌 ) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍 ) ) ) → ( ( 𝑋 +s 𝑚 ) ∈ No ∧ ( 𝑚 <s 𝑚 → ( 𝑚 +s 𝑋 ) <s ( 𝑚 +s 𝑋 ) ) ) )
27 26 simpld ( ( 𝜑 ∧ ( 𝑚 No ∧ ( ( bday 𝑚 ) ∈ ( bday 𝑌 ) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍 ) ) ) → ( 𝑋 +s 𝑚 ) ∈ No )
28 uncom ( ( ( bday 𝑋 ) +no ( bday 𝑌 ) ) ∪ ( ( bday 𝑋 ) +no ( bday 𝑍 ) ) ) = ( ( ( bday 𝑋 ) +no ( bday 𝑍 ) ) ∪ ( ( bday 𝑋 ) +no ( bday 𝑌 ) ) )
29 28 eleq2i ( ( ( ( bday 𝑥 ) +no ( bday 𝑦 ) ) ∪ ( ( bday 𝑥 ) +no ( bday 𝑧 ) ) ) ∈ ( ( ( bday 𝑋 ) +no ( bday 𝑌 ) ) ∪ ( ( bday 𝑋 ) +no ( bday 𝑍 ) ) ) ↔ ( ( ( bday 𝑥 ) +no ( bday 𝑦 ) ) ∪ ( ( bday 𝑥 ) +no ( bday 𝑧 ) ) ) ∈ ( ( ( bday 𝑋 ) +no ( bday 𝑍 ) ) ∪ ( ( bday 𝑋 ) +no ( bday 𝑌 ) ) ) )
30 29 imbi1i ( ( ( ( ( bday 𝑥 ) +no ( bday 𝑦 ) ) ∪ ( ( bday 𝑥 ) +no ( bday 𝑧 ) ) ) ∈ ( ( ( bday 𝑋 ) +no ( bday 𝑌 ) ) ∪ ( ( bday 𝑋 ) +no ( bday 𝑍 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) ↔ ( ( ( ( bday 𝑥 ) +no ( bday 𝑦 ) ) ∪ ( ( bday 𝑥 ) +no ( bday 𝑧 ) ) ) ∈ ( ( ( bday 𝑋 ) +no ( bday 𝑍 ) ) ∪ ( ( bday 𝑋 ) +no ( bday 𝑌 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) )
31 30 ralbii ( ∀ 𝑧 No ( ( ( ( bday 𝑥 ) +no ( bday 𝑦 ) ) ∪ ( ( bday 𝑥 ) +no ( bday 𝑧 ) ) ) ∈ ( ( ( bday 𝑋 ) +no ( bday 𝑌 ) ) ∪ ( ( bday 𝑋 ) +no ( bday 𝑍 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) ↔ ∀ 𝑧 No ( ( ( ( bday 𝑥 ) +no ( bday 𝑦 ) ) ∪ ( ( bday 𝑥 ) +no ( bday 𝑧 ) ) ) ∈ ( ( ( bday 𝑋 ) +no ( bday 𝑍 ) ) ∪ ( ( bday 𝑋 ) +no ( bday 𝑌 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) )
32 31 2ralbii ( ∀ 𝑥 No 𝑦 No 𝑧 No ( ( ( ( bday 𝑥 ) +no ( bday 𝑦 ) ) ∪ ( ( bday 𝑥 ) +no ( bday 𝑧 ) ) ) ∈ ( ( ( bday 𝑋 ) +no ( bday 𝑌 ) ) ∪ ( ( bday 𝑋 ) +no ( bday 𝑍 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) ↔ ∀ 𝑥 No 𝑦 No 𝑧 No ( ( ( ( bday 𝑥 ) +no ( bday 𝑦 ) ) ∪ ( ( bday 𝑥 ) +no ( bday 𝑧 ) ) ) ∈ ( ( ( bday 𝑋 ) +no ( bday 𝑍 ) ) ∪ ( ( bday 𝑋 ) +no ( bday 𝑌 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) )
33 1 32 sylib ( 𝜑 → ∀ 𝑥 No 𝑦 No 𝑧 No ( ( ( ( bday 𝑥 ) +no ( bday 𝑦 ) ) ∪ ( ( bday 𝑥 ) +no ( bday 𝑧 ) ) ) ∈ ( ( ( bday 𝑋 ) +no ( bday 𝑍 ) ) ∪ ( ( bday 𝑋 ) +no ( bday 𝑌 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) )
34 33 2 4 addsproplem3 ( 𝜑 → ( ( 𝑋 +s 𝑍 ) ∈ No ∧ ( { 𝑎 ∣ ∃ 𝑏 ∈ ( L ‘ 𝑋 ) 𝑎 = ( 𝑏 +s 𝑍 ) } ∪ { 𝑐 ∣ ∃ 𝑑 ∈ ( L ‘ 𝑍 ) 𝑐 = ( 𝑋 +s 𝑑 ) } ) <<s { ( 𝑋 +s 𝑍 ) } ∧ { ( 𝑋 +s 𝑍 ) } <<s ( { 𝑒 ∣ ∃ 𝑓 ∈ ( R ‘ 𝑋 ) 𝑒 = ( 𝑓 +s 𝑍 ) } ∪ { 𝑔 ∣ ∃ ∈ ( R ‘ 𝑍 ) 𝑔 = ( 𝑋 +s ) } ) ) )
35 34 simp1d ( 𝜑 → ( 𝑋 +s 𝑍 ) ∈ No )
36 35 adantr ( ( 𝜑 ∧ ( 𝑚 No ∧ ( ( bday 𝑚 ) ∈ ( bday 𝑌 ) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍 ) ) ) → ( 𝑋 +s 𝑍 ) ∈ No )
37 9 simp3d ( 𝜑 → { ( 𝑋 +s 𝑌 ) } <<s ( { 𝑒 ∣ ∃ 𝑓 ∈ ( R ‘ 𝑋 ) 𝑒 = ( 𝑓 +s 𝑌 ) } ∪ { 𝑔 ∣ ∃ ∈ ( R ‘ 𝑌 ) 𝑔 = ( 𝑋 +s ) } ) )
38 37 adantr ( ( 𝜑 ∧ ( 𝑚 No ∧ ( ( bday 𝑚 ) ∈ ( bday 𝑌 ) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍 ) ) ) → { ( 𝑋 +s 𝑌 ) } <<s ( { 𝑒 ∣ ∃ 𝑓 ∈ ( R ‘ 𝑋 ) 𝑒 = ( 𝑓 +s 𝑌 ) } ∪ { 𝑔 ∣ ∃ ∈ ( R ‘ 𝑌 ) 𝑔 = ( 𝑋 +s ) } ) )
39 ovex ( 𝑋 +s 𝑌 ) ∈ V
40 39 snid ( 𝑋 +s 𝑌 ) ∈ { ( 𝑋 +s 𝑌 ) }
41 40 a1i ( ( 𝜑 ∧ ( 𝑚 No ∧ ( ( bday 𝑚 ) ∈ ( bday 𝑌 ) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍 ) ) ) → ( 𝑋 +s 𝑌 ) ∈ { ( 𝑋 +s 𝑌 ) } )
42 oldbday ( ( ( bday 𝑌 ) ∈ On ∧ 𝑚 No ) → ( 𝑚 ∈ ( O ‘ ( bday 𝑌 ) ) ↔ ( bday 𝑚 ) ∈ ( bday 𝑌 ) ) )
43 18 14 42 sylancr ( ( 𝜑 ∧ ( 𝑚 No ∧ ( ( bday 𝑚 ) ∈ ( bday 𝑌 ) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍 ) ) ) → ( 𝑚 ∈ ( O ‘ ( bday 𝑌 ) ) ↔ ( bday 𝑚 ) ∈ ( bday 𝑌 ) ) )
44 16 43 mpbird ( ( 𝜑 ∧ ( 𝑚 No ∧ ( ( bday 𝑚 ) ∈ ( bday 𝑌 ) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍 ) ) ) → 𝑚 ∈ ( O ‘ ( bday 𝑌 ) ) )
45 simprr2 ( ( 𝜑 ∧ ( 𝑚 No ∧ ( ( bday 𝑚 ) ∈ ( bday 𝑌 ) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍 ) ) ) → 𝑌 <s 𝑚 )
46 elright ( 𝑚 ∈ ( R ‘ 𝑌 ) ↔ ( 𝑚 ∈ ( O ‘ ( bday 𝑌 ) ) ∧ 𝑌 <s 𝑚 ) )
47 44 45 46 sylanbrc ( ( 𝜑 ∧ ( 𝑚 No ∧ ( ( bday 𝑚 ) ∈ ( bday 𝑌 ) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍 ) ) ) → 𝑚 ∈ ( R ‘ 𝑌 ) )
48 eqid ( 𝑋 +s 𝑚 ) = ( 𝑋 +s 𝑚 )
49 oveq2 ( = 𝑚 → ( 𝑋 +s ) = ( 𝑋 +s 𝑚 ) )
50 49 rspceeqv ( ( 𝑚 ∈ ( R ‘ 𝑌 ) ∧ ( 𝑋 +s 𝑚 ) = ( 𝑋 +s 𝑚 ) ) → ∃ ∈ ( R ‘ 𝑌 ) ( 𝑋 +s 𝑚 ) = ( 𝑋 +s ) )
51 47 48 50 sylancl ( ( 𝜑 ∧ ( 𝑚 No ∧ ( ( bday 𝑚 ) ∈ ( bday 𝑌 ) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍 ) ) ) → ∃ ∈ ( R ‘ 𝑌 ) ( 𝑋 +s 𝑚 ) = ( 𝑋 +s ) )
52 ovex ( 𝑋 +s 𝑚 ) ∈ V
53 eqeq1 ( 𝑔 = ( 𝑋 +s 𝑚 ) → ( 𝑔 = ( 𝑋 +s ) ↔ ( 𝑋 +s 𝑚 ) = ( 𝑋 +s ) ) )
54 53 rexbidv ( 𝑔 = ( 𝑋 +s 𝑚 ) → ( ∃ ∈ ( R ‘ 𝑌 ) 𝑔 = ( 𝑋 +s ) ↔ ∃ ∈ ( R ‘ 𝑌 ) ( 𝑋 +s 𝑚 ) = ( 𝑋 +s ) ) )
55 52 54 elab ( ( 𝑋 +s 𝑚 ) ∈ { 𝑔 ∣ ∃ ∈ ( R ‘ 𝑌 ) 𝑔 = ( 𝑋 +s ) } ↔ ∃ ∈ ( R ‘ 𝑌 ) ( 𝑋 +s 𝑚 ) = ( 𝑋 +s ) )
56 51 55 sylibr ( ( 𝜑 ∧ ( 𝑚 No ∧ ( ( bday 𝑚 ) ∈ ( bday 𝑌 ) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍 ) ) ) → ( 𝑋 +s 𝑚 ) ∈ { 𝑔 ∣ ∃ ∈ ( R ‘ 𝑌 ) 𝑔 = ( 𝑋 +s ) } )
57 elun2 ( ( 𝑋 +s 𝑚 ) ∈ { 𝑔 ∣ ∃ ∈ ( R ‘ 𝑌 ) 𝑔 = ( 𝑋 +s ) } → ( 𝑋 +s 𝑚 ) ∈ ( { 𝑒 ∣ ∃ 𝑓 ∈ ( R ‘ 𝑋 ) 𝑒 = ( 𝑓 +s 𝑌 ) } ∪ { 𝑔 ∣ ∃ ∈ ( R ‘ 𝑌 ) 𝑔 = ( 𝑋 +s ) } ) )
58 56 57 syl ( ( 𝜑 ∧ ( 𝑚 No ∧ ( ( bday 𝑚 ) ∈ ( bday 𝑌 ) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍 ) ) ) → ( 𝑋 +s 𝑚 ) ∈ ( { 𝑒 ∣ ∃ 𝑓 ∈ ( R ‘ 𝑋 ) 𝑒 = ( 𝑓 +s 𝑌 ) } ∪ { 𝑔 ∣ ∃ ∈ ( R ‘ 𝑌 ) 𝑔 = ( 𝑋 +s ) } ) )
59 38 41 58 ssltsepcd ( ( 𝜑 ∧ ( 𝑚 No ∧ ( ( bday 𝑚 ) ∈ ( bday 𝑌 ) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍 ) ) ) → ( 𝑋 +s 𝑌 ) <s ( 𝑋 +s 𝑚 ) )
60 33 adantr ( ( 𝜑 ∧ ( 𝑚 No ∧ ( ( bday 𝑚 ) ∈ ( bday 𝑌 ) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍 ) ) ) → ∀ 𝑥 No 𝑦 No 𝑧 No ( ( ( ( bday 𝑥 ) +no ( bday 𝑦 ) ) ∪ ( ( bday 𝑥 ) +no ( bday 𝑧 ) ) ) ∈ ( ( ( bday 𝑋 ) +no ( bday 𝑍 ) ) ∪ ( ( bday 𝑋 ) +no ( bday 𝑌 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) )
61 4 adantr ( ( 𝜑 ∧ ( 𝑚 No ∧ ( ( bday 𝑚 ) ∈ ( bday 𝑌 ) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍 ) ) ) → 𝑍 No )
62 60 13 61 addsproplem3 ( ( 𝜑 ∧ ( 𝑚 No ∧ ( ( bday 𝑚 ) ∈ ( bday 𝑌 ) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍 ) ) ) → ( ( 𝑋 +s 𝑍 ) ∈ No ∧ ( { 𝑎 ∣ ∃ 𝑏 ∈ ( L ‘ 𝑋 ) 𝑎 = ( 𝑏 +s 𝑍 ) } ∪ { 𝑐 ∣ ∃ 𝑑 ∈ ( L ‘ 𝑍 ) 𝑐 = ( 𝑋 +s 𝑑 ) } ) <<s { ( 𝑋 +s 𝑍 ) } ∧ { ( 𝑋 +s 𝑍 ) } <<s ( { 𝑒 ∣ ∃ 𝑓 ∈ ( R ‘ 𝑋 ) 𝑒 = ( 𝑓 +s 𝑍 ) } ∪ { 𝑔 ∣ ∃ ∈ ( R ‘ 𝑍 ) 𝑔 = ( 𝑋 +s ) } ) ) )
63 62 simp2d ( ( 𝜑 ∧ ( 𝑚 No ∧ ( ( bday 𝑚 ) ∈ ( bday 𝑌 ) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍 ) ) ) → ( { 𝑎 ∣ ∃ 𝑏 ∈ ( L ‘ 𝑋 ) 𝑎 = ( 𝑏 +s 𝑍 ) } ∪ { 𝑐 ∣ ∃ 𝑑 ∈ ( L ‘ 𝑍 ) 𝑐 = ( 𝑋 +s 𝑑 ) } ) <<s { ( 𝑋 +s 𝑍 ) } )
64 6 adantr ( ( 𝜑 ∧ ( 𝑚 No ∧ ( ( bday 𝑚 ) ∈ ( bday 𝑌 ) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍 ) ) ) → ( bday 𝑌 ) = ( bday 𝑍 ) )
65 16 64 eleqtrd ( ( 𝜑 ∧ ( 𝑚 No ∧ ( ( bday 𝑚 ) ∈ ( bday 𝑌 ) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍 ) ) ) → ( bday 𝑚 ) ∈ ( bday 𝑍 ) )
66 bdayelon ( bday 𝑍 ) ∈ On
67 oldbday ( ( ( bday 𝑍 ) ∈ On ∧ 𝑚 No ) → ( 𝑚 ∈ ( O ‘ ( bday 𝑍 ) ) ↔ ( bday 𝑚 ) ∈ ( bday 𝑍 ) ) )
68 66 14 67 sylancr ( ( 𝜑 ∧ ( 𝑚 No ∧ ( ( bday 𝑚 ) ∈ ( bday 𝑌 ) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍 ) ) ) → ( 𝑚 ∈ ( O ‘ ( bday 𝑍 ) ) ↔ ( bday 𝑚 ) ∈ ( bday 𝑍 ) ) )
69 65 68 mpbird ( ( 𝜑 ∧ ( 𝑚 No ∧ ( ( bday 𝑚 ) ∈ ( bday 𝑌 ) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍 ) ) ) → 𝑚 ∈ ( O ‘ ( bday 𝑍 ) ) )
70 simprr3 ( ( 𝜑 ∧ ( 𝑚 No ∧ ( ( bday 𝑚 ) ∈ ( bday 𝑌 ) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍 ) ) ) → 𝑚 <s 𝑍 )
71 elleft ( 𝑚 ∈ ( L ‘ 𝑍 ) ↔ ( 𝑚 ∈ ( O ‘ ( bday 𝑍 ) ) ∧ 𝑚 <s 𝑍 ) )
72 69 70 71 sylanbrc ( ( 𝜑 ∧ ( 𝑚 No ∧ ( ( bday 𝑚 ) ∈ ( bday 𝑌 ) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍 ) ) ) → 𝑚 ∈ ( L ‘ 𝑍 ) )
73 oveq2 ( 𝑑 = 𝑚 → ( 𝑋 +s 𝑑 ) = ( 𝑋 +s 𝑚 ) )
74 73 rspceeqv ( ( 𝑚 ∈ ( L ‘ 𝑍 ) ∧ ( 𝑋 +s 𝑚 ) = ( 𝑋 +s 𝑚 ) ) → ∃ 𝑑 ∈ ( L ‘ 𝑍 ) ( 𝑋 +s 𝑚 ) = ( 𝑋 +s 𝑑 ) )
75 72 48 74 sylancl ( ( 𝜑 ∧ ( 𝑚 No ∧ ( ( bday 𝑚 ) ∈ ( bday 𝑌 ) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍 ) ) ) → ∃ 𝑑 ∈ ( L ‘ 𝑍 ) ( 𝑋 +s 𝑚 ) = ( 𝑋 +s 𝑑 ) )
76 eqeq1 ( 𝑐 = ( 𝑋 +s 𝑚 ) → ( 𝑐 = ( 𝑋 +s 𝑑 ) ↔ ( 𝑋 +s 𝑚 ) = ( 𝑋 +s 𝑑 ) ) )
77 76 rexbidv ( 𝑐 = ( 𝑋 +s 𝑚 ) → ( ∃ 𝑑 ∈ ( L ‘ 𝑍 ) 𝑐 = ( 𝑋 +s 𝑑 ) ↔ ∃ 𝑑 ∈ ( L ‘ 𝑍 ) ( 𝑋 +s 𝑚 ) = ( 𝑋 +s 𝑑 ) ) )
78 52 77 elab ( ( 𝑋 +s 𝑚 ) ∈ { 𝑐 ∣ ∃ 𝑑 ∈ ( L ‘ 𝑍 ) 𝑐 = ( 𝑋 +s 𝑑 ) } ↔ ∃ 𝑑 ∈ ( L ‘ 𝑍 ) ( 𝑋 +s 𝑚 ) = ( 𝑋 +s 𝑑 ) )
79 75 78 sylibr ( ( 𝜑 ∧ ( 𝑚 No ∧ ( ( bday 𝑚 ) ∈ ( bday 𝑌 ) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍 ) ) ) → ( 𝑋 +s 𝑚 ) ∈ { 𝑐 ∣ ∃ 𝑑 ∈ ( L ‘ 𝑍 ) 𝑐 = ( 𝑋 +s 𝑑 ) } )
80 elun2 ( ( 𝑋 +s 𝑚 ) ∈ { 𝑐 ∣ ∃ 𝑑 ∈ ( L ‘ 𝑍 ) 𝑐 = ( 𝑋 +s 𝑑 ) } → ( 𝑋 +s 𝑚 ) ∈ ( { 𝑎 ∣ ∃ 𝑏 ∈ ( L ‘ 𝑋 ) 𝑎 = ( 𝑏 +s 𝑍 ) } ∪ { 𝑐 ∣ ∃ 𝑑 ∈ ( L ‘ 𝑍 ) 𝑐 = ( 𝑋 +s 𝑑 ) } ) )
81 79 80 syl ( ( 𝜑 ∧ ( 𝑚 No ∧ ( ( bday 𝑚 ) ∈ ( bday 𝑌 ) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍 ) ) ) → ( 𝑋 +s 𝑚 ) ∈ ( { 𝑎 ∣ ∃ 𝑏 ∈ ( L ‘ 𝑋 ) 𝑎 = ( 𝑏 +s 𝑍 ) } ∪ { 𝑐 ∣ ∃ 𝑑 ∈ ( L ‘ 𝑍 ) 𝑐 = ( 𝑋 +s 𝑑 ) } ) )
82 ovex ( 𝑋 +s 𝑍 ) ∈ V
83 82 snid ( 𝑋 +s 𝑍 ) ∈ { ( 𝑋 +s 𝑍 ) }
84 83 a1i ( ( 𝜑 ∧ ( 𝑚 No ∧ ( ( bday 𝑚 ) ∈ ( bday 𝑌 ) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍 ) ) ) → ( 𝑋 +s 𝑍 ) ∈ { ( 𝑋 +s 𝑍 ) } )
85 63 81 84 ssltsepcd ( ( 𝜑 ∧ ( 𝑚 No ∧ ( ( bday 𝑚 ) ∈ ( bday 𝑌 ) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍 ) ) ) → ( 𝑋 +s 𝑚 ) <s ( 𝑋 +s 𝑍 ) )
86 11 27 36 59 85 slttrd ( ( 𝜑 ∧ ( 𝑚 No ∧ ( ( bday 𝑚 ) ∈ ( bday 𝑌 ) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍 ) ) ) → ( 𝑋 +s 𝑌 ) <s ( 𝑋 +s 𝑍 ) )
87 8 86 rexlimddv ( 𝜑 → ( 𝑋 +s 𝑌 ) <s ( 𝑋 +s 𝑍 ) )
88 3 2 addscomd ( 𝜑 → ( 𝑌 +s 𝑋 ) = ( 𝑋 +s 𝑌 ) )
89 4 2 addscomd ( 𝜑 → ( 𝑍 +s 𝑋 ) = ( 𝑋 +s 𝑍 ) )
90 87 88 89 3brtr4d ( 𝜑 → ( 𝑌 +s 𝑋 ) <s ( 𝑍 +s 𝑋 ) )