Step |
Hyp |
Ref |
Expression |
1 |
|
addsproplem.1 |
⊢ ( 𝜑 → ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ∀ 𝑧 ∈ No ( ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) ) |
2 |
|
addspropord.2 |
⊢ ( 𝜑 → 𝑋 ∈ No ) |
3 |
|
addspropord.3 |
⊢ ( 𝜑 → 𝑌 ∈ No ) |
4 |
|
addspropord.4 |
⊢ ( 𝜑 → 𝑍 ∈ No ) |
5 |
|
addspropord.5 |
⊢ ( 𝜑 → 𝑌 <s 𝑍 ) |
6 |
|
bdayelon |
⊢ ( bday ‘ 𝑌 ) ∈ On |
7 |
|
fvex |
⊢ ( bday ‘ 𝑌 ) ∈ V |
8 |
7
|
elon |
⊢ ( ( bday ‘ 𝑌 ) ∈ On ↔ Ord ( bday ‘ 𝑌 ) ) |
9 |
6 8
|
mpbi |
⊢ Ord ( bday ‘ 𝑌 ) |
10 |
|
bdayelon |
⊢ ( bday ‘ 𝑍 ) ∈ On |
11 |
|
fvex |
⊢ ( bday ‘ 𝑍 ) ∈ V |
12 |
11
|
elon |
⊢ ( ( bday ‘ 𝑍 ) ∈ On ↔ Ord ( bday ‘ 𝑍 ) ) |
13 |
10 12
|
mpbi |
⊢ Ord ( bday ‘ 𝑍 ) |
14 |
|
ordtri3or |
⊢ ( ( Ord ( bday ‘ 𝑌 ) ∧ Ord ( bday ‘ 𝑍 ) ) → ( ( bday ‘ 𝑌 ) ∈ ( bday ‘ 𝑍 ) ∨ ( bday ‘ 𝑌 ) = ( bday ‘ 𝑍 ) ∨ ( bday ‘ 𝑍 ) ∈ ( bday ‘ 𝑌 ) ) ) |
15 |
9 13 14
|
mp2an |
⊢ ( ( bday ‘ 𝑌 ) ∈ ( bday ‘ 𝑍 ) ∨ ( bday ‘ 𝑌 ) = ( bday ‘ 𝑍 ) ∨ ( bday ‘ 𝑍 ) ∈ ( bday ‘ 𝑌 ) ) |
16 |
|
simpl |
⊢ ( ( 𝜑 ∧ ( bday ‘ 𝑌 ) ∈ ( bday ‘ 𝑍 ) ) → 𝜑 ) |
17 |
16 1
|
syl |
⊢ ( ( 𝜑 ∧ ( bday ‘ 𝑌 ) ∈ ( bday ‘ 𝑍 ) ) → ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ∀ 𝑧 ∈ No ( ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) ) |
18 |
16 2
|
syl |
⊢ ( ( 𝜑 ∧ ( bday ‘ 𝑌 ) ∈ ( bday ‘ 𝑍 ) ) → 𝑋 ∈ No ) |
19 |
16 3
|
syl |
⊢ ( ( 𝜑 ∧ ( bday ‘ 𝑌 ) ∈ ( bday ‘ 𝑍 ) ) → 𝑌 ∈ No ) |
20 |
16 4
|
syl |
⊢ ( ( 𝜑 ∧ ( bday ‘ 𝑌 ) ∈ ( bday ‘ 𝑍 ) ) → 𝑍 ∈ No ) |
21 |
16 5
|
syl |
⊢ ( ( 𝜑 ∧ ( bday ‘ 𝑌 ) ∈ ( bday ‘ 𝑍 ) ) → 𝑌 <s 𝑍 ) |
22 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( bday ‘ 𝑌 ) ∈ ( bday ‘ 𝑍 ) ) → ( bday ‘ 𝑌 ) ∈ ( bday ‘ 𝑍 ) ) |
23 |
17 18 19 20 21 22
|
addsproplem4 |
⊢ ( ( 𝜑 ∧ ( bday ‘ 𝑌 ) ∈ ( bday ‘ 𝑍 ) ) → ( 𝑌 +s 𝑋 ) <s ( 𝑍 +s 𝑋 ) ) |
24 |
23
|
ex |
⊢ ( 𝜑 → ( ( bday ‘ 𝑌 ) ∈ ( bday ‘ 𝑍 ) → ( 𝑌 +s 𝑋 ) <s ( 𝑍 +s 𝑋 ) ) ) |
25 |
|
simpl |
⊢ ( ( 𝜑 ∧ ( bday ‘ 𝑌 ) = ( bday ‘ 𝑍 ) ) → 𝜑 ) |
26 |
25 1
|
syl |
⊢ ( ( 𝜑 ∧ ( bday ‘ 𝑌 ) = ( bday ‘ 𝑍 ) ) → ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ∀ 𝑧 ∈ No ( ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) ) |
27 |
25 2
|
syl |
⊢ ( ( 𝜑 ∧ ( bday ‘ 𝑌 ) = ( bday ‘ 𝑍 ) ) → 𝑋 ∈ No ) |
28 |
25 3
|
syl |
⊢ ( ( 𝜑 ∧ ( bday ‘ 𝑌 ) = ( bday ‘ 𝑍 ) ) → 𝑌 ∈ No ) |
29 |
25 4
|
syl |
⊢ ( ( 𝜑 ∧ ( bday ‘ 𝑌 ) = ( bday ‘ 𝑍 ) ) → 𝑍 ∈ No ) |
30 |
25 5
|
syl |
⊢ ( ( 𝜑 ∧ ( bday ‘ 𝑌 ) = ( bday ‘ 𝑍 ) ) → 𝑌 <s 𝑍 ) |
31 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( bday ‘ 𝑌 ) = ( bday ‘ 𝑍 ) ) → ( bday ‘ 𝑌 ) = ( bday ‘ 𝑍 ) ) |
32 |
26 27 28 29 30 31
|
addsproplem6 |
⊢ ( ( 𝜑 ∧ ( bday ‘ 𝑌 ) = ( bday ‘ 𝑍 ) ) → ( 𝑌 +s 𝑋 ) <s ( 𝑍 +s 𝑋 ) ) |
33 |
32
|
ex |
⊢ ( 𝜑 → ( ( bday ‘ 𝑌 ) = ( bday ‘ 𝑍 ) → ( 𝑌 +s 𝑋 ) <s ( 𝑍 +s 𝑋 ) ) ) |
34 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( bday ‘ 𝑍 ) ∈ ( bday ‘ 𝑌 ) ) → ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ∀ 𝑧 ∈ No ( ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) ) |
35 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( bday ‘ 𝑍 ) ∈ ( bday ‘ 𝑌 ) ) → 𝑋 ∈ No ) |
36 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( bday ‘ 𝑍 ) ∈ ( bday ‘ 𝑌 ) ) → 𝑌 ∈ No ) |
37 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( bday ‘ 𝑍 ) ∈ ( bday ‘ 𝑌 ) ) → 𝑍 ∈ No ) |
38 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( bday ‘ 𝑍 ) ∈ ( bday ‘ 𝑌 ) ) → 𝑌 <s 𝑍 ) |
39 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( bday ‘ 𝑍 ) ∈ ( bday ‘ 𝑌 ) ) → ( bday ‘ 𝑍 ) ∈ ( bday ‘ 𝑌 ) ) |
40 |
34 35 36 37 38 39
|
addsproplem5 |
⊢ ( ( 𝜑 ∧ ( bday ‘ 𝑍 ) ∈ ( bday ‘ 𝑌 ) ) → ( 𝑌 +s 𝑋 ) <s ( 𝑍 +s 𝑋 ) ) |
41 |
40
|
ex |
⊢ ( 𝜑 → ( ( bday ‘ 𝑍 ) ∈ ( bday ‘ 𝑌 ) → ( 𝑌 +s 𝑋 ) <s ( 𝑍 +s 𝑋 ) ) ) |
42 |
24 33 41
|
3jaod |
⊢ ( 𝜑 → ( ( ( bday ‘ 𝑌 ) ∈ ( bday ‘ 𝑍 ) ∨ ( bday ‘ 𝑌 ) = ( bday ‘ 𝑍 ) ∨ ( bday ‘ 𝑍 ) ∈ ( bday ‘ 𝑌 ) ) → ( 𝑌 +s 𝑋 ) <s ( 𝑍 +s 𝑋 ) ) ) |
43 |
15 42
|
mpi |
⊢ ( 𝜑 → ( 𝑌 +s 𝑋 ) <s ( 𝑍 +s 𝑋 ) ) |