Metamath Proof Explorer


Theorem addsq2reu

Description: For each complex number C , there exists a unique complex number a added to the square of a unique another complex number b resulting in the given complex number C . The unique complex number a is C , and the unique another complex number b is 0 .

Remark: This, together with addsqnreup , is an example showing that the pattern E! a e. A E! b e. B ph does not necessarily mean "There are unique sets a and b fulfilling ph ). See also comments for df-eu and 2eu4 . For more details see comment for addsqnreup . (Contributed by AV, 21-Jun-2023)

Ref Expression
Assertion addsq2reu ( 𝐶 ∈ ℂ → ∃! 𝑎 ∈ ℂ ∃! 𝑏 ∈ ℂ ( 𝑎 + ( 𝑏 ↑ 2 ) ) = 𝐶 )

Proof

Step Hyp Ref Expression
1 id ( 𝐶 ∈ ℂ → 𝐶 ∈ ℂ )
2 oveq1 ( 𝑎 = 𝐶 → ( 𝑎 + ( 𝑏 ↑ 2 ) ) = ( 𝐶 + ( 𝑏 ↑ 2 ) ) )
3 2 eqeq1d ( 𝑎 = 𝐶 → ( ( 𝑎 + ( 𝑏 ↑ 2 ) ) = 𝐶 ↔ ( 𝐶 + ( 𝑏 ↑ 2 ) ) = 𝐶 ) )
4 3 reubidv ( 𝑎 = 𝐶 → ( ∃! 𝑏 ∈ ℂ ( 𝑎 + ( 𝑏 ↑ 2 ) ) = 𝐶 ↔ ∃! 𝑏 ∈ ℂ ( 𝐶 + ( 𝑏 ↑ 2 ) ) = 𝐶 ) )
5 eqeq1 ( 𝑎 = 𝐶 → ( 𝑎 = 𝑐𝐶 = 𝑐 ) )
6 5 imbi2d ( 𝑎 = 𝐶 → ( ( ∃! 𝑏 ∈ ℂ ( 𝑐 + ( 𝑏 ↑ 2 ) ) = 𝐶𝑎 = 𝑐 ) ↔ ( ∃! 𝑏 ∈ ℂ ( 𝑐 + ( 𝑏 ↑ 2 ) ) = 𝐶𝐶 = 𝑐 ) ) )
7 6 ralbidv ( 𝑎 = 𝐶 → ( ∀ 𝑐 ∈ ℂ ( ∃! 𝑏 ∈ ℂ ( 𝑐 + ( 𝑏 ↑ 2 ) ) = 𝐶𝑎 = 𝑐 ) ↔ ∀ 𝑐 ∈ ℂ ( ∃! 𝑏 ∈ ℂ ( 𝑐 + ( 𝑏 ↑ 2 ) ) = 𝐶𝐶 = 𝑐 ) ) )
8 4 7 anbi12d ( 𝑎 = 𝐶 → ( ( ∃! 𝑏 ∈ ℂ ( 𝑎 + ( 𝑏 ↑ 2 ) ) = 𝐶 ∧ ∀ 𝑐 ∈ ℂ ( ∃! 𝑏 ∈ ℂ ( 𝑐 + ( 𝑏 ↑ 2 ) ) = 𝐶𝑎 = 𝑐 ) ) ↔ ( ∃! 𝑏 ∈ ℂ ( 𝐶 + ( 𝑏 ↑ 2 ) ) = 𝐶 ∧ ∀ 𝑐 ∈ ℂ ( ∃! 𝑏 ∈ ℂ ( 𝑐 + ( 𝑏 ↑ 2 ) ) = 𝐶𝐶 = 𝑐 ) ) ) )
9 8 adantl ( ( 𝐶 ∈ ℂ ∧ 𝑎 = 𝐶 ) → ( ( ∃! 𝑏 ∈ ℂ ( 𝑎 + ( 𝑏 ↑ 2 ) ) = 𝐶 ∧ ∀ 𝑐 ∈ ℂ ( ∃! 𝑏 ∈ ℂ ( 𝑐 + ( 𝑏 ↑ 2 ) ) = 𝐶𝑎 = 𝑐 ) ) ↔ ( ∃! 𝑏 ∈ ℂ ( 𝐶 + ( 𝑏 ↑ 2 ) ) = 𝐶 ∧ ∀ 𝑐 ∈ ℂ ( ∃! 𝑏 ∈ ℂ ( 𝑐 + ( 𝑏 ↑ 2 ) ) = 𝐶𝐶 = 𝑐 ) ) ) )
10 0cnd ( 𝐶 ∈ ℂ → 0 ∈ ℂ )
11 reueq ( 0 ∈ ℂ ↔ ∃! 𝑏 ∈ ℂ 𝑏 = 0 )
12 10 11 sylib ( 𝐶 ∈ ℂ → ∃! 𝑏 ∈ ℂ 𝑏 = 0 )
13 subid ( 𝐶 ∈ ℂ → ( 𝐶𝐶 ) = 0 )
14 13 adantr ( ( 𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ ) → ( 𝐶𝐶 ) = 0 )
15 14 eqeq1d ( ( 𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ ) → ( ( 𝐶𝐶 ) = ( 𝑏 ↑ 2 ) ↔ 0 = ( 𝑏 ↑ 2 ) ) )
16 simpl ( ( 𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ ) → 𝐶 ∈ ℂ )
17 simpr ( ( 𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ ) → 𝑏 ∈ ℂ )
18 17 sqcld ( ( 𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ ) → ( 𝑏 ↑ 2 ) ∈ ℂ )
19 16 16 18 subaddd ( ( 𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ ) → ( ( 𝐶𝐶 ) = ( 𝑏 ↑ 2 ) ↔ ( 𝐶 + ( 𝑏 ↑ 2 ) ) = 𝐶 ) )
20 eqcom ( 0 = ( 𝑏 ↑ 2 ) ↔ ( 𝑏 ↑ 2 ) = 0 )
21 sqeq0 ( 𝑏 ∈ ℂ → ( ( 𝑏 ↑ 2 ) = 0 ↔ 𝑏 = 0 ) )
22 20 21 syl5bb ( 𝑏 ∈ ℂ → ( 0 = ( 𝑏 ↑ 2 ) ↔ 𝑏 = 0 ) )
23 22 adantl ( ( 𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ ) → ( 0 = ( 𝑏 ↑ 2 ) ↔ 𝑏 = 0 ) )
24 15 19 23 3bitr3d ( ( 𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ ) → ( ( 𝐶 + ( 𝑏 ↑ 2 ) ) = 𝐶𝑏 = 0 ) )
25 24 reubidva ( 𝐶 ∈ ℂ → ( ∃! 𝑏 ∈ ℂ ( 𝐶 + ( 𝑏 ↑ 2 ) ) = 𝐶 ↔ ∃! 𝑏 ∈ ℂ 𝑏 = 0 ) )
26 12 25 mpbird ( 𝐶 ∈ ℂ → ∃! 𝑏 ∈ ℂ ( 𝐶 + ( 𝑏 ↑ 2 ) ) = 𝐶 )
27 simpr ( ( 𝐶 ∈ ℂ ∧ 𝑐 ∈ ℂ ) → 𝑐 ∈ ℂ )
28 27 adantr ( ( ( 𝐶 ∈ ℂ ∧ 𝑐 ∈ ℂ ) ∧ 𝑏 ∈ ℂ ) → 𝑐 ∈ ℂ )
29 sqcl ( 𝑏 ∈ ℂ → ( 𝑏 ↑ 2 ) ∈ ℂ )
30 29 adantl ( ( ( 𝐶 ∈ ℂ ∧ 𝑐 ∈ ℂ ) ∧ 𝑏 ∈ ℂ ) → ( 𝑏 ↑ 2 ) ∈ ℂ )
31 simpl ( ( 𝐶 ∈ ℂ ∧ 𝑐 ∈ ℂ ) → 𝐶 ∈ ℂ )
32 31 adantr ( ( ( 𝐶 ∈ ℂ ∧ 𝑐 ∈ ℂ ) ∧ 𝑏 ∈ ℂ ) → 𝐶 ∈ ℂ )
33 28 30 32 addrsub ( ( ( 𝐶 ∈ ℂ ∧ 𝑐 ∈ ℂ ) ∧ 𝑏 ∈ ℂ ) → ( ( 𝑐 + ( 𝑏 ↑ 2 ) ) = 𝐶 ↔ ( 𝑏 ↑ 2 ) = ( 𝐶𝑐 ) ) )
34 33 reubidva ( ( 𝐶 ∈ ℂ ∧ 𝑐 ∈ ℂ ) → ( ∃! 𝑏 ∈ ℂ ( 𝑐 + ( 𝑏 ↑ 2 ) ) = 𝐶 ↔ ∃! 𝑏 ∈ ℂ ( 𝑏 ↑ 2 ) = ( 𝐶𝑐 ) ) )
35 subcl ( ( 𝐶 ∈ ℂ ∧ 𝑐 ∈ ℂ ) → ( 𝐶𝑐 ) ∈ ℂ )
36 reusq0 ( ( 𝐶𝑐 ) ∈ ℂ → ( ∃! 𝑏 ∈ ℂ ( 𝑏 ↑ 2 ) = ( 𝐶𝑐 ) ↔ ( 𝐶𝑐 ) = 0 ) )
37 35 36 syl ( ( 𝐶 ∈ ℂ ∧ 𝑐 ∈ ℂ ) → ( ∃! 𝑏 ∈ ℂ ( 𝑏 ↑ 2 ) = ( 𝐶𝑐 ) ↔ ( 𝐶𝑐 ) = 0 ) )
38 subeq0 ( ( 𝐶 ∈ ℂ ∧ 𝑐 ∈ ℂ ) → ( ( 𝐶𝑐 ) = 0 ↔ 𝐶 = 𝑐 ) )
39 38 biimpd ( ( 𝐶 ∈ ℂ ∧ 𝑐 ∈ ℂ ) → ( ( 𝐶𝑐 ) = 0 → 𝐶 = 𝑐 ) )
40 37 39 sylbid ( ( 𝐶 ∈ ℂ ∧ 𝑐 ∈ ℂ ) → ( ∃! 𝑏 ∈ ℂ ( 𝑏 ↑ 2 ) = ( 𝐶𝑐 ) → 𝐶 = 𝑐 ) )
41 34 40 sylbid ( ( 𝐶 ∈ ℂ ∧ 𝑐 ∈ ℂ ) → ( ∃! 𝑏 ∈ ℂ ( 𝑐 + ( 𝑏 ↑ 2 ) ) = 𝐶𝐶 = 𝑐 ) )
42 41 ralrimiva ( 𝐶 ∈ ℂ → ∀ 𝑐 ∈ ℂ ( ∃! 𝑏 ∈ ℂ ( 𝑐 + ( 𝑏 ↑ 2 ) ) = 𝐶𝐶 = 𝑐 ) )
43 26 42 jca ( 𝐶 ∈ ℂ → ( ∃! 𝑏 ∈ ℂ ( 𝐶 + ( 𝑏 ↑ 2 ) ) = 𝐶 ∧ ∀ 𝑐 ∈ ℂ ( ∃! 𝑏 ∈ ℂ ( 𝑐 + ( 𝑏 ↑ 2 ) ) = 𝐶𝐶 = 𝑐 ) ) )
44 1 9 43 rspcedvd ( 𝐶 ∈ ℂ → ∃ 𝑎 ∈ ℂ ( ∃! 𝑏 ∈ ℂ ( 𝑎 + ( 𝑏 ↑ 2 ) ) = 𝐶 ∧ ∀ 𝑐 ∈ ℂ ( ∃! 𝑏 ∈ ℂ ( 𝑐 + ( 𝑏 ↑ 2 ) ) = 𝐶𝑎 = 𝑐 ) ) )
45 oveq1 ( 𝑎 = 𝑐 → ( 𝑎 + ( 𝑏 ↑ 2 ) ) = ( 𝑐 + ( 𝑏 ↑ 2 ) ) )
46 45 eqeq1d ( 𝑎 = 𝑐 → ( ( 𝑎 + ( 𝑏 ↑ 2 ) ) = 𝐶 ↔ ( 𝑐 + ( 𝑏 ↑ 2 ) ) = 𝐶 ) )
47 46 reubidv ( 𝑎 = 𝑐 → ( ∃! 𝑏 ∈ ℂ ( 𝑎 + ( 𝑏 ↑ 2 ) ) = 𝐶 ↔ ∃! 𝑏 ∈ ℂ ( 𝑐 + ( 𝑏 ↑ 2 ) ) = 𝐶 ) )
48 47 reu8 ( ∃! 𝑎 ∈ ℂ ∃! 𝑏 ∈ ℂ ( 𝑎 + ( 𝑏 ↑ 2 ) ) = 𝐶 ↔ ∃ 𝑎 ∈ ℂ ( ∃! 𝑏 ∈ ℂ ( 𝑎 + ( 𝑏 ↑ 2 ) ) = 𝐶 ∧ ∀ 𝑐 ∈ ℂ ( ∃! 𝑏 ∈ ℂ ( 𝑐 + ( 𝑏 ↑ 2 ) ) = 𝐶𝑎 = 𝑐 ) ) )
49 44 48 sylibr ( 𝐶 ∈ ℂ → ∃! 𝑎 ∈ ℂ ∃! 𝑏 ∈ ℂ ( 𝑎 + ( 𝑏 ↑ 2 ) ) = 𝐶 )