Metamath Proof Explorer


Theorem addsqrexnreu

Description: For each complex number, there exists a complex number to which the square of more than one (or no) other complex numbers can be added to result in the given complex number.

Remark: This theorem, together with addsq2reu , shows that there are cases in which there is a set together with a not unique other set fulfilling a wff, although there is a unique set fulfilling the wff together with another unique set (see addsq2reu ). For more details see comment for addsqnreup . (Contributed by AV, 20-Jun-2023)

Ref Expression
Assertion addsqrexnreu ( 𝐶 ∈ ℂ → ∃ 𝑎 ∈ ℂ ¬ ∃! 𝑏 ∈ ℂ ( 𝑎 + ( 𝑏 ↑ 2 ) ) = 𝐶 )

Proof

Step Hyp Ref Expression
1 peano2cnm ( 𝐶 ∈ ℂ → ( 𝐶 − 1 ) ∈ ℂ )
2 oveq1 ( 𝑎 = ( 𝐶 − 1 ) → ( 𝑎 + ( 𝑏 ↑ 2 ) ) = ( ( 𝐶 − 1 ) + ( 𝑏 ↑ 2 ) ) )
3 2 eqeq1d ( 𝑎 = ( 𝐶 − 1 ) → ( ( 𝑎 + ( 𝑏 ↑ 2 ) ) = 𝐶 ↔ ( ( 𝐶 − 1 ) + ( 𝑏 ↑ 2 ) ) = 𝐶 ) )
4 3 reubidv ( 𝑎 = ( 𝐶 − 1 ) → ( ∃! 𝑏 ∈ ℂ ( 𝑎 + ( 𝑏 ↑ 2 ) ) = 𝐶 ↔ ∃! 𝑏 ∈ ℂ ( ( 𝐶 − 1 ) + ( 𝑏 ↑ 2 ) ) = 𝐶 ) )
5 4 notbid ( 𝑎 = ( 𝐶 − 1 ) → ( ¬ ∃! 𝑏 ∈ ℂ ( 𝑎 + ( 𝑏 ↑ 2 ) ) = 𝐶 ↔ ¬ ∃! 𝑏 ∈ ℂ ( ( 𝐶 − 1 ) + ( 𝑏 ↑ 2 ) ) = 𝐶 ) )
6 5 adantl ( ( 𝐶 ∈ ℂ ∧ 𝑎 = ( 𝐶 − 1 ) ) → ( ¬ ∃! 𝑏 ∈ ℂ ( 𝑎 + ( 𝑏 ↑ 2 ) ) = 𝐶 ↔ ¬ ∃! 𝑏 ∈ ℂ ( ( 𝐶 − 1 ) + ( 𝑏 ↑ 2 ) ) = 𝐶 ) )
7 ax-1cn 1 ∈ ℂ
8 neg1cn - 1 ∈ ℂ
9 1nn 1 ∈ ℕ
10 nnneneg ( 1 ∈ ℕ → 1 ≠ - 1 )
11 9 10 ax-mp 1 ≠ - 1
12 7 8 11 3pm3.2i ( 1 ∈ ℂ ∧ - 1 ∈ ℂ ∧ 1 ≠ - 1 )
13 sq1 ( 1 ↑ 2 ) = 1
14 13 eqcomi 1 = ( 1 ↑ 2 )
15 neg1sqe1 ( - 1 ↑ 2 ) = 1
16 15 eqcomi 1 = ( - 1 ↑ 2 )
17 14 16 pm3.2i ( 1 = ( 1 ↑ 2 ) ∧ 1 = ( - 1 ↑ 2 ) )
18 oveq1 ( 𝑏 = 1 → ( 𝑏 ↑ 2 ) = ( 1 ↑ 2 ) )
19 18 eqeq2d ( 𝑏 = 1 → ( 1 = ( 𝑏 ↑ 2 ) ↔ 1 = ( 1 ↑ 2 ) ) )
20 oveq1 ( 𝑏 = - 1 → ( 𝑏 ↑ 2 ) = ( - 1 ↑ 2 ) )
21 20 eqeq2d ( 𝑏 = - 1 → ( 1 = ( 𝑏 ↑ 2 ) ↔ 1 = ( - 1 ↑ 2 ) ) )
22 19 21 2nreu ( ( 1 ∈ ℂ ∧ - 1 ∈ ℂ ∧ 1 ≠ - 1 ) → ( ( 1 = ( 1 ↑ 2 ) ∧ 1 = ( - 1 ↑ 2 ) ) → ¬ ∃! 𝑏 ∈ ℂ 1 = ( 𝑏 ↑ 2 ) ) )
23 12 17 22 mp2 ¬ ∃! 𝑏 ∈ ℂ 1 = ( 𝑏 ↑ 2 )
24 simpl ( ( 𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ ) → 𝐶 ∈ ℂ )
25 1 adantr ( ( 𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ ) → ( 𝐶 − 1 ) ∈ ℂ )
26 sqcl ( 𝑏 ∈ ℂ → ( 𝑏 ↑ 2 ) ∈ ℂ )
27 26 adantl ( ( 𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ ) → ( 𝑏 ↑ 2 ) ∈ ℂ )
28 24 25 27 subaddd ( ( 𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ ) → ( ( 𝐶 − ( 𝐶 − 1 ) ) = ( 𝑏 ↑ 2 ) ↔ ( ( 𝐶 − 1 ) + ( 𝑏 ↑ 2 ) ) = 𝐶 ) )
29 id ( 𝐶 ∈ ℂ → 𝐶 ∈ ℂ )
30 1cnd ( 𝐶 ∈ ℂ → 1 ∈ ℂ )
31 29 30 nncand ( 𝐶 ∈ ℂ → ( 𝐶 − ( 𝐶 − 1 ) ) = 1 )
32 31 adantr ( ( 𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ ) → ( 𝐶 − ( 𝐶 − 1 ) ) = 1 )
33 32 eqeq1d ( ( 𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ ) → ( ( 𝐶 − ( 𝐶 − 1 ) ) = ( 𝑏 ↑ 2 ) ↔ 1 = ( 𝑏 ↑ 2 ) ) )
34 28 33 bitr3d ( ( 𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ ) → ( ( ( 𝐶 − 1 ) + ( 𝑏 ↑ 2 ) ) = 𝐶 ↔ 1 = ( 𝑏 ↑ 2 ) ) )
35 34 reubidva ( 𝐶 ∈ ℂ → ( ∃! 𝑏 ∈ ℂ ( ( 𝐶 − 1 ) + ( 𝑏 ↑ 2 ) ) = 𝐶 ↔ ∃! 𝑏 ∈ ℂ 1 = ( 𝑏 ↑ 2 ) ) )
36 23 35 mtbiri ( 𝐶 ∈ ℂ → ¬ ∃! 𝑏 ∈ ℂ ( ( 𝐶 − 1 ) + ( 𝑏 ↑ 2 ) ) = 𝐶 )
37 1 6 36 rspcedvd ( 𝐶 ∈ ℂ → ∃ 𝑎 ∈ ℂ ¬ ∃! 𝑏 ∈ ℂ ( 𝑎 + ( 𝑏 ↑ 2 ) ) = 𝐶 )