Description: Commutative/associative law for addition and subtraction. (Contributed by NM, 8-Feb-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | addsub12 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 + ( 𝐵 − 𝐶 ) ) = ( 𝐵 + ( 𝐴 − 𝐶 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subadd23 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 − 𝐶 ) + 𝐵 ) = ( 𝐴 + ( 𝐵 − 𝐶 ) ) ) | |
2 | subcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 − 𝐶 ) ∈ ℂ ) | |
3 | addcom | ⊢ ( ( ( 𝐴 − 𝐶 ) ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 − 𝐶 ) + 𝐵 ) = ( 𝐵 + ( 𝐴 − 𝐶 ) ) ) | |
4 | 2 3 | stoic3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 − 𝐶 ) + 𝐵 ) = ( 𝐵 + ( 𝐴 − 𝐶 ) ) ) |
5 | 1 4 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + ( 𝐵 − 𝐶 ) ) = ( 𝐵 + ( 𝐴 − 𝐶 ) ) ) |
6 | 5 | 3com23 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 + ( 𝐵 − 𝐶 ) ) = ( 𝐵 + ( 𝐴 − 𝐶 ) ) ) |