Metamath Proof Explorer
Description: Rearrangement of 4 terms in a mixed addition and subtraction.
(Contributed by NM, 17-Oct-1999)
|
|
Ref |
Expression |
|
Hypotheses |
negidi.1 |
⊢ 𝐴 ∈ ℂ |
|
|
pncan3i.2 |
⊢ 𝐵 ∈ ℂ |
|
|
subadd.3 |
⊢ 𝐶 ∈ ℂ |
|
|
addsub4i.4 |
⊢ 𝐷 ∈ ℂ |
|
Assertion |
addsub4i |
⊢ ( ( 𝐴 + 𝐵 ) − ( 𝐶 + 𝐷 ) ) = ( ( 𝐴 − 𝐶 ) + ( 𝐵 − 𝐷 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
negidi.1 |
⊢ 𝐴 ∈ ℂ |
2 |
|
pncan3i.2 |
⊢ 𝐵 ∈ ℂ |
3 |
|
subadd.3 |
⊢ 𝐶 ∈ ℂ |
4 |
|
addsub4i.4 |
⊢ 𝐷 ∈ ℂ |
5 |
|
addsub4 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 + 𝐵 ) − ( 𝐶 + 𝐷 ) ) = ( ( 𝐴 − 𝐶 ) + ( 𝐵 − 𝐷 ) ) ) |
6 |
1 2 3 4 5
|
mp4an |
⊢ ( ( 𝐴 + 𝐵 ) − ( 𝐶 + 𝐷 ) ) = ( ( 𝐴 − 𝐶 ) + ( 𝐵 − 𝐷 ) ) |