Metamath Proof Explorer
		
		
		
		Description:  Rearrangement of 4 terms in a mixed addition and subtraction.
       (Contributed by NM, 17-Oct-1999)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | negidi.1 | ⊢ 𝐴  ∈  ℂ | 
					
						|  |  | pncan3i.2 | ⊢ 𝐵  ∈  ℂ | 
					
						|  |  | subadd.3 | ⊢ 𝐶  ∈  ℂ | 
					
						|  |  | addsub4i.4 | ⊢ 𝐷  ∈  ℂ | 
				
					|  | Assertion | addsub4i | ⊢  ( ( 𝐴  +  𝐵 )  −  ( 𝐶  +  𝐷 ) )  =  ( ( 𝐴  −  𝐶 )  +  ( 𝐵  −  𝐷 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | negidi.1 | ⊢ 𝐴  ∈  ℂ | 
						
							| 2 |  | pncan3i.2 | ⊢ 𝐵  ∈  ℂ | 
						
							| 3 |  | subadd.3 | ⊢ 𝐶  ∈  ℂ | 
						
							| 4 |  | addsub4i.4 | ⊢ 𝐷  ∈  ℂ | 
						
							| 5 |  | addsub4 | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  ∧  ( 𝐶  ∈  ℂ  ∧  𝐷  ∈  ℂ ) )  →  ( ( 𝐴  +  𝐵 )  −  ( 𝐶  +  𝐷 ) )  =  ( ( 𝐴  −  𝐶 )  +  ( 𝐵  −  𝐷 ) ) ) | 
						
							| 6 | 1 2 3 4 5 | mp4an | ⊢ ( ( 𝐴  +  𝐵 )  −  ( 𝐶  +  𝐷 ) )  =  ( ( 𝐴  −  𝐶 )  +  ( 𝐵  −  𝐷 ) ) |