Metamath Proof Explorer


Theorem addsubassi

Description: Associative-type law for subtraction and addition. (Contributed by NM, 16-Sep-1999)

Ref Expression
Hypotheses negidi.1 𝐴 ∈ ℂ
pncan3i.2 𝐵 ∈ ℂ
subadd.3 𝐶 ∈ ℂ
Assertion addsubassi ( ( 𝐴 + 𝐵 ) − 𝐶 ) = ( 𝐴 + ( 𝐵𝐶 ) )

Proof

Step Hyp Ref Expression
1 negidi.1 𝐴 ∈ ℂ
2 pncan3i.2 𝐵 ∈ ℂ
3 subadd.3 𝐶 ∈ ℂ
4 addsubass ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) − 𝐶 ) = ( 𝐴 + ( 𝐵𝐶 ) ) )
5 1 2 3 4 mp3an ( ( 𝐴 + 𝐵 ) − 𝐶 ) = ( 𝐴 + ( 𝐵𝐶 ) )