| Step |
Hyp |
Ref |
Expression |
| 1 |
|
negsub |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + - 𝐵 ) = ( 𝐴 − 𝐵 ) ) |
| 2 |
1
|
eqcomd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 − 𝐵 ) = ( 𝐴 + - 𝐵 ) ) |
| 3 |
2
|
eqeq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) = ( 𝐴 − 𝐵 ) ↔ ( 𝐴 + 𝐵 ) = ( 𝐴 + - 𝐵 ) ) ) |
| 4 |
|
negcl |
⊢ ( 𝐵 ∈ ℂ → - 𝐵 ∈ ℂ ) |
| 5 |
4
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → - 𝐵 ∈ ℂ ) |
| 6 |
|
addcan |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ - 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) = ( 𝐴 + - 𝐵 ) ↔ 𝐵 = - 𝐵 ) ) |
| 7 |
5 6
|
mpd3an3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) = ( 𝐴 + - 𝐵 ) ↔ 𝐵 = - 𝐵 ) ) |
| 8 |
|
eqneg |
⊢ ( 𝐵 ∈ ℂ → ( 𝐵 = - 𝐵 ↔ 𝐵 = 0 ) ) |
| 9 |
8
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐵 = - 𝐵 ↔ 𝐵 = 0 ) ) |
| 10 |
3 7 9
|
3bitrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) = ( 𝐴 − 𝐵 ) ↔ 𝐵 = 0 ) ) |