Step |
Hyp |
Ref |
Expression |
1 |
|
eqcom |
⊢ ( ( 𝐶 − 𝐴 ) = ( 𝐵 − 𝐷 ) ↔ ( 𝐵 − 𝐷 ) = ( 𝐶 − 𝐴 ) ) |
2 |
|
subcl |
⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 𝐶 − 𝐴 ) ∈ ℂ ) |
3 |
2
|
ancoms |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐶 − 𝐴 ) ∈ ℂ ) |
4 |
|
subadd |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ ( 𝐶 − 𝐴 ) ∈ ℂ ) → ( ( 𝐵 − 𝐷 ) = ( 𝐶 − 𝐴 ) ↔ ( 𝐷 + ( 𝐶 − 𝐴 ) ) = 𝐵 ) ) |
5 |
4
|
3expa |
⊢ ( ( ( 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( 𝐶 − 𝐴 ) ∈ ℂ ) → ( ( 𝐵 − 𝐷 ) = ( 𝐶 − 𝐴 ) ↔ ( 𝐷 + ( 𝐶 − 𝐴 ) ) = 𝐵 ) ) |
6 |
5
|
ancoms |
⊢ ( ( ( 𝐶 − 𝐴 ) ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐵 − 𝐷 ) = ( 𝐶 − 𝐴 ) ↔ ( 𝐷 + ( 𝐶 − 𝐴 ) ) = 𝐵 ) ) |
7 |
3 6
|
sylan |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐵 − 𝐷 ) = ( 𝐶 − 𝐴 ) ↔ ( 𝐷 + ( 𝐶 − 𝐴 ) ) = 𝐵 ) ) |
8 |
7
|
an4s |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐵 − 𝐷 ) = ( 𝐶 − 𝐴 ) ↔ ( 𝐷 + ( 𝐶 − 𝐴 ) ) = 𝐵 ) ) |
9 |
1 8
|
syl5bb |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐶 − 𝐴 ) = ( 𝐵 − 𝐷 ) ↔ ( 𝐷 + ( 𝐶 − 𝐴 ) ) = 𝐵 ) ) |
10 |
|
addcom |
⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( 𝐶 + 𝐷 ) = ( 𝐷 + 𝐶 ) ) |
11 |
10
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( 𝐶 + 𝐷 ) = ( 𝐷 + 𝐶 ) ) |
12 |
11
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐶 + 𝐷 ) − 𝐴 ) = ( ( 𝐷 + 𝐶 ) − 𝐴 ) ) |
13 |
|
addsubass |
⊢ ( ( 𝐷 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( 𝐷 + 𝐶 ) − 𝐴 ) = ( 𝐷 + ( 𝐶 − 𝐴 ) ) ) |
14 |
13
|
3com12 |
⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( 𝐷 + 𝐶 ) − 𝐴 ) = ( 𝐷 + ( 𝐶 − 𝐴 ) ) ) |
15 |
14
|
3expa |
⊢ ( ( ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ 𝐴 ∈ ℂ ) → ( ( 𝐷 + 𝐶 ) − 𝐴 ) = ( 𝐷 + ( 𝐶 − 𝐴 ) ) ) |
16 |
15
|
ancoms |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐷 + 𝐶 ) − 𝐴 ) = ( 𝐷 + ( 𝐶 − 𝐴 ) ) ) |
17 |
12 16
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐶 + 𝐷 ) − 𝐴 ) = ( 𝐷 + ( 𝐶 − 𝐴 ) ) ) |
18 |
17
|
adantlr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐶 + 𝐷 ) − 𝐴 ) = ( 𝐷 + ( 𝐶 − 𝐴 ) ) ) |
19 |
18
|
eqeq1d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( ( 𝐶 + 𝐷 ) − 𝐴 ) = 𝐵 ↔ ( 𝐷 + ( 𝐶 − 𝐴 ) ) = 𝐵 ) ) |
20 |
|
addcl |
⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( 𝐶 + 𝐷 ) ∈ ℂ ) |
21 |
|
subadd |
⊢ ( ( ( 𝐶 + 𝐷 ) ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( 𝐶 + 𝐷 ) − 𝐴 ) = 𝐵 ↔ ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) ) ) |
22 |
21
|
3expb |
⊢ ( ( ( 𝐶 + 𝐷 ) ∈ ℂ ∧ ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ) → ( ( ( 𝐶 + 𝐷 ) − 𝐴 ) = 𝐵 ↔ ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) ) ) |
23 |
22
|
ancoms |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 + 𝐷 ) ∈ ℂ ) → ( ( ( 𝐶 + 𝐷 ) − 𝐴 ) = 𝐵 ↔ ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) ) ) |
24 |
20 23
|
sylan2 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( ( 𝐶 + 𝐷 ) − 𝐴 ) = 𝐵 ↔ ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) ) ) |
25 |
9 19 24
|
3bitr2rd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) ↔ ( 𝐶 − 𝐴 ) = ( 𝐵 − 𝐷 ) ) ) |