| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							eqcom | 
							⊢ ( ( 𝐶  −  𝐴 )  =  ( 𝐵  −  𝐷 )  ↔  ( 𝐵  −  𝐷 )  =  ( 𝐶  −  𝐴 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							subcl | 
							⊢ ( ( 𝐶  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( 𝐶  −  𝐴 )  ∈  ℂ )  | 
						
						
							| 3 | 
							
								2
							 | 
							ancoms | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( 𝐶  −  𝐴 )  ∈  ℂ )  | 
						
						
							| 4 | 
							
								
							 | 
							subadd | 
							⊢ ( ( 𝐵  ∈  ℂ  ∧  𝐷  ∈  ℂ  ∧  ( 𝐶  −  𝐴 )  ∈  ℂ )  →  ( ( 𝐵  −  𝐷 )  =  ( 𝐶  −  𝐴 )  ↔  ( 𝐷  +  ( 𝐶  −  𝐴 ) )  =  𝐵 ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							3expa | 
							⊢ ( ( ( 𝐵  ∈  ℂ  ∧  𝐷  ∈  ℂ )  ∧  ( 𝐶  −  𝐴 )  ∈  ℂ )  →  ( ( 𝐵  −  𝐷 )  =  ( 𝐶  −  𝐴 )  ↔  ( 𝐷  +  ( 𝐶  −  𝐴 ) )  =  𝐵 ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							ancoms | 
							⊢ ( ( ( 𝐶  −  𝐴 )  ∈  ℂ  ∧  ( 𝐵  ∈  ℂ  ∧  𝐷  ∈  ℂ ) )  →  ( ( 𝐵  −  𝐷 )  =  ( 𝐶  −  𝐴 )  ↔  ( 𝐷  +  ( 𝐶  −  𝐴 ) )  =  𝐵 ) )  | 
						
						
							| 7 | 
							
								3 6
							 | 
							sylan | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  ( 𝐵  ∈  ℂ  ∧  𝐷  ∈  ℂ ) )  →  ( ( 𝐵  −  𝐷 )  =  ( 𝐶  −  𝐴 )  ↔  ( 𝐷  +  ( 𝐶  −  𝐴 ) )  =  𝐵 ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							an4s | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  ∧  ( 𝐶  ∈  ℂ  ∧  𝐷  ∈  ℂ ) )  →  ( ( 𝐵  −  𝐷 )  =  ( 𝐶  −  𝐴 )  ↔  ( 𝐷  +  ( 𝐶  −  𝐴 ) )  =  𝐵 ) )  | 
						
						
							| 9 | 
							
								1 8
							 | 
							bitrid | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  ∧  ( 𝐶  ∈  ℂ  ∧  𝐷  ∈  ℂ ) )  →  ( ( 𝐶  −  𝐴 )  =  ( 𝐵  −  𝐷 )  ↔  ( 𝐷  +  ( 𝐶  −  𝐴 ) )  =  𝐵 ) )  | 
						
						
							| 10 | 
							
								
							 | 
							addcom | 
							⊢ ( ( 𝐶  ∈  ℂ  ∧  𝐷  ∈  ℂ )  →  ( 𝐶  +  𝐷 )  =  ( 𝐷  +  𝐶 ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							adantl | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( 𝐶  ∈  ℂ  ∧  𝐷  ∈  ℂ ) )  →  ( 𝐶  +  𝐷 )  =  ( 𝐷  +  𝐶 ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							oveq1d | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( 𝐶  ∈  ℂ  ∧  𝐷  ∈  ℂ ) )  →  ( ( 𝐶  +  𝐷 )  −  𝐴 )  =  ( ( 𝐷  +  𝐶 )  −  𝐴 ) )  | 
						
						
							| 13 | 
							
								
							 | 
							addsubass | 
							⊢ ( ( 𝐷  ∈  ℂ  ∧  𝐶  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( ( 𝐷  +  𝐶 )  −  𝐴 )  =  ( 𝐷  +  ( 𝐶  −  𝐴 ) ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							3com12 | 
							⊢ ( ( 𝐶  ∈  ℂ  ∧  𝐷  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( ( 𝐷  +  𝐶 )  −  𝐴 )  =  ( 𝐷  +  ( 𝐶  −  𝐴 ) ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							3expa | 
							⊢ ( ( ( 𝐶  ∈  ℂ  ∧  𝐷  ∈  ℂ )  ∧  𝐴  ∈  ℂ )  →  ( ( 𝐷  +  𝐶 )  −  𝐴 )  =  ( 𝐷  +  ( 𝐶  −  𝐴 ) ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							ancoms | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( 𝐶  ∈  ℂ  ∧  𝐷  ∈  ℂ ) )  →  ( ( 𝐷  +  𝐶 )  −  𝐴 )  =  ( 𝐷  +  ( 𝐶  −  𝐴 ) ) )  | 
						
						
							| 17 | 
							
								12 16
							 | 
							eqtrd | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( 𝐶  ∈  ℂ  ∧  𝐷  ∈  ℂ ) )  →  ( ( 𝐶  +  𝐷 )  −  𝐴 )  =  ( 𝐷  +  ( 𝐶  −  𝐴 ) ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							adantlr | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  ∧  ( 𝐶  ∈  ℂ  ∧  𝐷  ∈  ℂ ) )  →  ( ( 𝐶  +  𝐷 )  −  𝐴 )  =  ( 𝐷  +  ( 𝐶  −  𝐴 ) ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							eqeq1d | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  ∧  ( 𝐶  ∈  ℂ  ∧  𝐷  ∈  ℂ ) )  →  ( ( ( 𝐶  +  𝐷 )  −  𝐴 )  =  𝐵  ↔  ( 𝐷  +  ( 𝐶  −  𝐴 ) )  =  𝐵 ) )  | 
						
						
							| 20 | 
							
								
							 | 
							addcl | 
							⊢ ( ( 𝐶  ∈  ℂ  ∧  𝐷  ∈  ℂ )  →  ( 𝐶  +  𝐷 )  ∈  ℂ )  | 
						
						
							| 21 | 
							
								
							 | 
							subadd | 
							⊢ ( ( ( 𝐶  +  𝐷 )  ∈  ℂ  ∧  𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ( ( 𝐶  +  𝐷 )  −  𝐴 )  =  𝐵  ↔  ( 𝐴  +  𝐵 )  =  ( 𝐶  +  𝐷 ) ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							3expb | 
							⊢ ( ( ( 𝐶  +  𝐷 )  ∈  ℂ  ∧  ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ ) )  →  ( ( ( 𝐶  +  𝐷 )  −  𝐴 )  =  𝐵  ↔  ( 𝐴  +  𝐵 )  =  ( 𝐶  +  𝐷 ) ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							ancoms | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  ∧  ( 𝐶  +  𝐷 )  ∈  ℂ )  →  ( ( ( 𝐶  +  𝐷 )  −  𝐴 )  =  𝐵  ↔  ( 𝐴  +  𝐵 )  =  ( 𝐶  +  𝐷 ) ) )  | 
						
						
							| 24 | 
							
								20 23
							 | 
							sylan2 | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  ∧  ( 𝐶  ∈  ℂ  ∧  𝐷  ∈  ℂ ) )  →  ( ( ( 𝐶  +  𝐷 )  −  𝐴 )  =  𝐵  ↔  ( 𝐴  +  𝐵 )  =  ( 𝐶  +  𝐷 ) ) )  | 
						
						
							| 25 | 
							
								9 19 24
							 | 
							3bitr2rd | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  ∧  ( 𝐶  ∈  ℂ  ∧  𝐷  ∈  ℂ ) )  →  ( ( 𝐴  +  𝐵 )  =  ( 𝐶  +  𝐷 )  ↔  ( 𝐶  −  𝐴 )  =  ( 𝐵  −  𝐷 ) ) )  |