Metamath Proof Explorer


Theorem addsubi

Description: Law for subtraction and addition. (Contributed by NM, 6-Aug-2003)

Ref Expression
Hypotheses negidi.1 𝐴 ∈ ℂ
pncan3i.2 𝐵 ∈ ℂ
subadd.3 𝐶 ∈ ℂ
Assertion addsubi ( ( 𝐴 + 𝐵 ) − 𝐶 ) = ( ( 𝐴𝐶 ) + 𝐵 )

Proof

Step Hyp Ref Expression
1 negidi.1 𝐴 ∈ ℂ
2 pncan3i.2 𝐵 ∈ ℂ
3 subadd.3 𝐶 ∈ ℂ
4 addsub ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) − 𝐶 ) = ( ( 𝐴𝐶 ) + 𝐵 ) )
5 1 2 3 4 mp3an ( ( 𝐴 + 𝐵 ) − 𝐶 ) = ( ( 𝐴𝐶 ) + 𝐵 )