Metamath Proof Explorer


Theorem addsubs4d

Description: Rearrangement of four terms in mixed addition and subtraction. Surreal version. (Contributed by Scott Fenton, 25-Jul-2025)

Ref Expression
Hypotheses addsubs4d.1 ( 𝜑𝐴 No )
addsubs4d.2 ( 𝜑𝐵 No )
addsubs4d.3 ( 𝜑𝐶 No )
addsubs4d.4 ( 𝜑𝐷 No )
Assertion addsubs4d ( 𝜑 → ( ( 𝐴 +s 𝐵 ) -s ( 𝐶 +s 𝐷 ) ) = ( ( 𝐴 -s 𝐶 ) +s ( 𝐵 -s 𝐷 ) ) )

Proof

Step Hyp Ref Expression
1 addsubs4d.1 ( 𝜑𝐴 No )
2 addsubs4d.2 ( 𝜑𝐵 No )
3 addsubs4d.3 ( 𝜑𝐶 No )
4 addsubs4d.4 ( 𝜑𝐷 No )
5 1 2 3 addsubsd ( 𝜑 → ( ( 𝐴 +s 𝐵 ) -s 𝐶 ) = ( ( 𝐴 -s 𝐶 ) +s 𝐵 ) )
6 5 oveq1d ( 𝜑 → ( ( ( 𝐴 +s 𝐵 ) -s 𝐶 ) -s 𝐷 ) = ( ( ( 𝐴 -s 𝐶 ) +s 𝐵 ) -s 𝐷 ) )
7 1 2 addscld ( 𝜑 → ( 𝐴 +s 𝐵 ) ∈ No )
8 7 3 4 subsubs4d ( 𝜑 → ( ( ( 𝐴 +s 𝐵 ) -s 𝐶 ) -s 𝐷 ) = ( ( 𝐴 +s 𝐵 ) -s ( 𝐶 +s 𝐷 ) ) )
9 1 3 subscld ( 𝜑 → ( 𝐴 -s 𝐶 ) ∈ No )
10 9 2 4 addsubsassd ( 𝜑 → ( ( ( 𝐴 -s 𝐶 ) +s 𝐵 ) -s 𝐷 ) = ( ( 𝐴 -s 𝐶 ) +s ( 𝐵 -s 𝐷 ) ) )
11 6 8 10 3eqtr3d ( 𝜑 → ( ( 𝐴 +s 𝐵 ) -s ( 𝐶 +s 𝐷 ) ) = ( ( 𝐴 -s 𝐶 ) +s ( 𝐵 -s 𝐷 ) ) )