| Step |
Hyp |
Ref |
Expression |
| 1 |
|
addsubs4d.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
| 2 |
|
addsubs4d.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
| 3 |
|
addsubs4d.3 |
⊢ ( 𝜑 → 𝐶 ∈ No ) |
| 4 |
|
addsubs4d.4 |
⊢ ( 𝜑 → 𝐷 ∈ No ) |
| 5 |
1 2 3
|
addsubsd |
⊢ ( 𝜑 → ( ( 𝐴 +s 𝐵 ) -s 𝐶 ) = ( ( 𝐴 -s 𝐶 ) +s 𝐵 ) ) |
| 6 |
5
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐴 +s 𝐵 ) -s 𝐶 ) -s 𝐷 ) = ( ( ( 𝐴 -s 𝐶 ) +s 𝐵 ) -s 𝐷 ) ) |
| 7 |
1 2
|
addscld |
⊢ ( 𝜑 → ( 𝐴 +s 𝐵 ) ∈ No ) |
| 8 |
7 3 4
|
subsubs4d |
⊢ ( 𝜑 → ( ( ( 𝐴 +s 𝐵 ) -s 𝐶 ) -s 𝐷 ) = ( ( 𝐴 +s 𝐵 ) -s ( 𝐶 +s 𝐷 ) ) ) |
| 9 |
1 3
|
subscld |
⊢ ( 𝜑 → ( 𝐴 -s 𝐶 ) ∈ No ) |
| 10 |
9 2 4
|
addsubsassd |
⊢ ( 𝜑 → ( ( ( 𝐴 -s 𝐶 ) +s 𝐵 ) -s 𝐷 ) = ( ( 𝐴 -s 𝐶 ) +s ( 𝐵 -s 𝐷 ) ) ) |
| 11 |
6 8 10
|
3eqtr3d |
⊢ ( 𝜑 → ( ( 𝐴 +s 𝐵 ) -s ( 𝐶 +s 𝐷 ) ) = ( ( 𝐴 -s 𝐶 ) +s ( 𝐵 -s 𝐷 ) ) ) |