Step |
Hyp |
Ref |
Expression |
1 |
|
addsunif.1 |
⊢ ( 𝜑 → 𝐿 <<s 𝑅 ) |
2 |
|
addsunif.2 |
⊢ ( 𝜑 → 𝑀 <<s 𝑆 ) |
3 |
|
addsunif.3 |
⊢ ( 𝜑 → 𝐴 = ( 𝐿 |s 𝑅 ) ) |
4 |
|
addsunif.4 |
⊢ ( 𝜑 → 𝐵 = ( 𝑀 |s 𝑆 ) ) |
5 |
1 2 3 4
|
addsuniflem |
⊢ ( 𝜑 → ( 𝐴 +s 𝐵 ) = ( ( { 𝑎 ∣ ∃ 𝑏 ∈ 𝐿 𝑎 = ( 𝑏 +s 𝐵 ) } ∪ { 𝑐 ∣ ∃ 𝑑 ∈ 𝑀 𝑐 = ( 𝐴 +s 𝑑 ) } ) |s ( { 𝑒 ∣ ∃ 𝑓 ∈ 𝑅 𝑒 = ( 𝑓 +s 𝐵 ) } ∪ { 𝑔 ∣ ∃ ℎ ∈ 𝑆 𝑔 = ( 𝐴 +s ℎ ) } ) ) ) |
6 |
|
oveq1 |
⊢ ( 𝑙 = 𝑏 → ( 𝑙 +s 𝐵 ) = ( 𝑏 +s 𝐵 ) ) |
7 |
6
|
eqeq2d |
⊢ ( 𝑙 = 𝑏 → ( 𝑦 = ( 𝑙 +s 𝐵 ) ↔ 𝑦 = ( 𝑏 +s 𝐵 ) ) ) |
8 |
7
|
cbvrexvw |
⊢ ( ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) ↔ ∃ 𝑏 ∈ 𝐿 𝑦 = ( 𝑏 +s 𝐵 ) ) |
9 |
|
eqeq1 |
⊢ ( 𝑦 = 𝑎 → ( 𝑦 = ( 𝑏 +s 𝐵 ) ↔ 𝑎 = ( 𝑏 +s 𝐵 ) ) ) |
10 |
9
|
rexbidv |
⊢ ( 𝑦 = 𝑎 → ( ∃ 𝑏 ∈ 𝐿 𝑦 = ( 𝑏 +s 𝐵 ) ↔ ∃ 𝑏 ∈ 𝐿 𝑎 = ( 𝑏 +s 𝐵 ) ) ) |
11 |
8 10
|
bitrid |
⊢ ( 𝑦 = 𝑎 → ( ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) ↔ ∃ 𝑏 ∈ 𝐿 𝑎 = ( 𝑏 +s 𝐵 ) ) ) |
12 |
11
|
cbvabv |
⊢ { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } = { 𝑎 ∣ ∃ 𝑏 ∈ 𝐿 𝑎 = ( 𝑏 +s 𝐵 ) } |
13 |
|
oveq2 |
⊢ ( 𝑚 = 𝑑 → ( 𝐴 +s 𝑚 ) = ( 𝐴 +s 𝑑 ) ) |
14 |
13
|
eqeq2d |
⊢ ( 𝑚 = 𝑑 → ( 𝑧 = ( 𝐴 +s 𝑚 ) ↔ 𝑧 = ( 𝐴 +s 𝑑 ) ) ) |
15 |
14
|
cbvrexvw |
⊢ ( ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) ↔ ∃ 𝑑 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑑 ) ) |
16 |
|
eqeq1 |
⊢ ( 𝑧 = 𝑐 → ( 𝑧 = ( 𝐴 +s 𝑑 ) ↔ 𝑐 = ( 𝐴 +s 𝑑 ) ) ) |
17 |
16
|
rexbidv |
⊢ ( 𝑧 = 𝑐 → ( ∃ 𝑑 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑑 ) ↔ ∃ 𝑑 ∈ 𝑀 𝑐 = ( 𝐴 +s 𝑑 ) ) ) |
18 |
15 17
|
bitrid |
⊢ ( 𝑧 = 𝑐 → ( ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) ↔ ∃ 𝑑 ∈ 𝑀 𝑐 = ( 𝐴 +s 𝑑 ) ) ) |
19 |
18
|
cbvabv |
⊢ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } = { 𝑐 ∣ ∃ 𝑑 ∈ 𝑀 𝑐 = ( 𝐴 +s 𝑑 ) } |
20 |
12 19
|
uneq12i |
⊢ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) = ( { 𝑎 ∣ ∃ 𝑏 ∈ 𝐿 𝑎 = ( 𝑏 +s 𝐵 ) } ∪ { 𝑐 ∣ ∃ 𝑑 ∈ 𝑀 𝑐 = ( 𝐴 +s 𝑑 ) } ) |
21 |
|
oveq1 |
⊢ ( 𝑟 = 𝑓 → ( 𝑟 +s 𝐵 ) = ( 𝑓 +s 𝐵 ) ) |
22 |
21
|
eqeq2d |
⊢ ( 𝑟 = 𝑓 → ( 𝑤 = ( 𝑟 +s 𝐵 ) ↔ 𝑤 = ( 𝑓 +s 𝐵 ) ) ) |
23 |
22
|
cbvrexvw |
⊢ ( ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) ↔ ∃ 𝑓 ∈ 𝑅 𝑤 = ( 𝑓 +s 𝐵 ) ) |
24 |
|
eqeq1 |
⊢ ( 𝑤 = 𝑒 → ( 𝑤 = ( 𝑓 +s 𝐵 ) ↔ 𝑒 = ( 𝑓 +s 𝐵 ) ) ) |
25 |
24
|
rexbidv |
⊢ ( 𝑤 = 𝑒 → ( ∃ 𝑓 ∈ 𝑅 𝑤 = ( 𝑓 +s 𝐵 ) ↔ ∃ 𝑓 ∈ 𝑅 𝑒 = ( 𝑓 +s 𝐵 ) ) ) |
26 |
23 25
|
bitrid |
⊢ ( 𝑤 = 𝑒 → ( ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) ↔ ∃ 𝑓 ∈ 𝑅 𝑒 = ( 𝑓 +s 𝐵 ) ) ) |
27 |
26
|
cbvabv |
⊢ { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } = { 𝑒 ∣ ∃ 𝑓 ∈ 𝑅 𝑒 = ( 𝑓 +s 𝐵 ) } |
28 |
|
oveq2 |
⊢ ( 𝑠 = ℎ → ( 𝐴 +s 𝑠 ) = ( 𝐴 +s ℎ ) ) |
29 |
28
|
eqeq2d |
⊢ ( 𝑠 = ℎ → ( 𝑡 = ( 𝐴 +s 𝑠 ) ↔ 𝑡 = ( 𝐴 +s ℎ ) ) ) |
30 |
29
|
cbvrexvw |
⊢ ( ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) ↔ ∃ ℎ ∈ 𝑆 𝑡 = ( 𝐴 +s ℎ ) ) |
31 |
|
eqeq1 |
⊢ ( 𝑡 = 𝑔 → ( 𝑡 = ( 𝐴 +s ℎ ) ↔ 𝑔 = ( 𝐴 +s ℎ ) ) ) |
32 |
31
|
rexbidv |
⊢ ( 𝑡 = 𝑔 → ( ∃ ℎ ∈ 𝑆 𝑡 = ( 𝐴 +s ℎ ) ↔ ∃ ℎ ∈ 𝑆 𝑔 = ( 𝐴 +s ℎ ) ) ) |
33 |
30 32
|
bitrid |
⊢ ( 𝑡 = 𝑔 → ( ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) ↔ ∃ ℎ ∈ 𝑆 𝑔 = ( 𝐴 +s ℎ ) ) ) |
34 |
33
|
cbvabv |
⊢ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } = { 𝑔 ∣ ∃ ℎ ∈ 𝑆 𝑔 = ( 𝐴 +s ℎ ) } |
35 |
27 34
|
uneq12i |
⊢ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) = ( { 𝑒 ∣ ∃ 𝑓 ∈ 𝑅 𝑒 = ( 𝑓 +s 𝐵 ) } ∪ { 𝑔 ∣ ∃ ℎ ∈ 𝑆 𝑔 = ( 𝐴 +s ℎ ) } ) |
36 |
20 35
|
oveq12i |
⊢ ( ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) |s ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) ) = ( ( { 𝑎 ∣ ∃ 𝑏 ∈ 𝐿 𝑎 = ( 𝑏 +s 𝐵 ) } ∪ { 𝑐 ∣ ∃ 𝑑 ∈ 𝑀 𝑐 = ( 𝐴 +s 𝑑 ) } ) |s ( { 𝑒 ∣ ∃ 𝑓 ∈ 𝑅 𝑒 = ( 𝑓 +s 𝐵 ) } ∪ { 𝑔 ∣ ∃ ℎ ∈ 𝑆 𝑔 = ( 𝐴 +s ℎ ) } ) ) |
37 |
5 36
|
eqtr4di |
⊢ ( 𝜑 → ( 𝐴 +s 𝐵 ) = ( ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) |s ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) ) ) |