Step |
Hyp |
Ref |
Expression |
1 |
|
addsuniflem.1 |
⊢ ( 𝜑 → 𝐿 <<s 𝑅 ) |
2 |
|
addsuniflem.2 |
⊢ ( 𝜑 → 𝑀 <<s 𝑆 ) |
3 |
|
addsuniflem.3 |
⊢ ( 𝜑 → 𝐴 = ( 𝐿 |s 𝑅 ) ) |
4 |
|
addsuniflem.4 |
⊢ ( 𝜑 → 𝐵 = ( 𝑀 |s 𝑆 ) ) |
5 |
1
|
scutcld |
⊢ ( 𝜑 → ( 𝐿 |s 𝑅 ) ∈ No ) |
6 |
3 5
|
eqeltrd |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
7 |
2
|
scutcld |
⊢ ( 𝜑 → ( 𝑀 |s 𝑆 ) ∈ No ) |
8 |
4 7
|
eqeltrd |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
9 |
|
addsval2 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 +s 𝐵 ) = ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) 𝑎 = ( 𝑝 +s 𝐵 ) } ∪ { 𝑏 ∣ ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑏 = ( 𝐴 +s 𝑞 ) } ) |s ( { 𝑐 ∣ ∃ 𝑒 ∈ ( R ‘ 𝐴 ) 𝑐 = ( 𝑒 +s 𝐵 ) } ∪ { 𝑑 ∣ ∃ 𝑓 ∈ ( R ‘ 𝐵 ) 𝑑 = ( 𝐴 +s 𝑓 ) } ) ) ) |
10 |
6 8 9
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 +s 𝐵 ) = ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) 𝑎 = ( 𝑝 +s 𝐵 ) } ∪ { 𝑏 ∣ ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑏 = ( 𝐴 +s 𝑞 ) } ) |s ( { 𝑐 ∣ ∃ 𝑒 ∈ ( R ‘ 𝐴 ) 𝑐 = ( 𝑒 +s 𝐵 ) } ∪ { 𝑑 ∣ ∃ 𝑓 ∈ ( R ‘ 𝐵 ) 𝑑 = ( 𝐴 +s 𝑓 ) } ) ) ) |
11 |
6 8
|
addscut |
⊢ ( 𝜑 → ( ( 𝐴 +s 𝐵 ) ∈ No ∧ ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) 𝑎 = ( 𝑝 +s 𝐵 ) } ∪ { 𝑏 ∣ ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑏 = ( 𝐴 +s 𝑞 ) } ) <<s { ( 𝐴 +s 𝐵 ) } ∧ { ( 𝐴 +s 𝐵 ) } <<s ( { 𝑐 ∣ ∃ 𝑒 ∈ ( R ‘ 𝐴 ) 𝑐 = ( 𝑒 +s 𝐵 ) } ∪ { 𝑑 ∣ ∃ 𝑓 ∈ ( R ‘ 𝐵 ) 𝑑 = ( 𝐴 +s 𝑓 ) } ) ) ) |
12 |
11
|
simp2d |
⊢ ( 𝜑 → ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) 𝑎 = ( 𝑝 +s 𝐵 ) } ∪ { 𝑏 ∣ ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑏 = ( 𝐴 +s 𝑞 ) } ) <<s { ( 𝐴 +s 𝐵 ) } ) |
13 |
11
|
simp3d |
⊢ ( 𝜑 → { ( 𝐴 +s 𝐵 ) } <<s ( { 𝑐 ∣ ∃ 𝑒 ∈ ( R ‘ 𝐴 ) 𝑐 = ( 𝑒 +s 𝐵 ) } ∪ { 𝑑 ∣ ∃ 𝑓 ∈ ( R ‘ 𝐵 ) 𝑑 = ( 𝐴 +s 𝑓 ) } ) ) |
14 |
|
ovex |
⊢ ( 𝐴 +s 𝐵 ) ∈ V |
15 |
14
|
snnz |
⊢ { ( 𝐴 +s 𝐵 ) } ≠ ∅ |
16 |
|
sslttr |
⊢ ( ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) 𝑎 = ( 𝑝 +s 𝐵 ) } ∪ { 𝑏 ∣ ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑏 = ( 𝐴 +s 𝑞 ) } ) <<s { ( 𝐴 +s 𝐵 ) } ∧ { ( 𝐴 +s 𝐵 ) } <<s ( { 𝑐 ∣ ∃ 𝑒 ∈ ( R ‘ 𝐴 ) 𝑐 = ( 𝑒 +s 𝐵 ) } ∪ { 𝑑 ∣ ∃ 𝑓 ∈ ( R ‘ 𝐵 ) 𝑑 = ( 𝐴 +s 𝑓 ) } ) ∧ { ( 𝐴 +s 𝐵 ) } ≠ ∅ ) → ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) 𝑎 = ( 𝑝 +s 𝐵 ) } ∪ { 𝑏 ∣ ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑏 = ( 𝐴 +s 𝑞 ) } ) <<s ( { 𝑐 ∣ ∃ 𝑒 ∈ ( R ‘ 𝐴 ) 𝑐 = ( 𝑒 +s 𝐵 ) } ∪ { 𝑑 ∣ ∃ 𝑓 ∈ ( R ‘ 𝐵 ) 𝑑 = ( 𝐴 +s 𝑓 ) } ) ) |
17 |
15 16
|
mp3an3 |
⊢ ( ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) 𝑎 = ( 𝑝 +s 𝐵 ) } ∪ { 𝑏 ∣ ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑏 = ( 𝐴 +s 𝑞 ) } ) <<s { ( 𝐴 +s 𝐵 ) } ∧ { ( 𝐴 +s 𝐵 ) } <<s ( { 𝑐 ∣ ∃ 𝑒 ∈ ( R ‘ 𝐴 ) 𝑐 = ( 𝑒 +s 𝐵 ) } ∪ { 𝑑 ∣ ∃ 𝑓 ∈ ( R ‘ 𝐵 ) 𝑑 = ( 𝐴 +s 𝑓 ) } ) ) → ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) 𝑎 = ( 𝑝 +s 𝐵 ) } ∪ { 𝑏 ∣ ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑏 = ( 𝐴 +s 𝑞 ) } ) <<s ( { 𝑐 ∣ ∃ 𝑒 ∈ ( R ‘ 𝐴 ) 𝑐 = ( 𝑒 +s 𝐵 ) } ∪ { 𝑑 ∣ ∃ 𝑓 ∈ ( R ‘ 𝐵 ) 𝑑 = ( 𝐴 +s 𝑓 ) } ) ) |
18 |
12 13 17
|
syl2anc |
⊢ ( 𝜑 → ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) 𝑎 = ( 𝑝 +s 𝐵 ) } ∪ { 𝑏 ∣ ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑏 = ( 𝐴 +s 𝑞 ) } ) <<s ( { 𝑐 ∣ ∃ 𝑒 ∈ ( R ‘ 𝐴 ) 𝑐 = ( 𝑒 +s 𝐵 ) } ∪ { 𝑑 ∣ ∃ 𝑓 ∈ ( R ‘ 𝐵 ) 𝑑 = ( 𝐴 +s 𝑓 ) } ) ) |
19 |
1 3
|
cofcutr1d |
⊢ ( 𝜑 → ∀ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑙 ∈ 𝐿 𝑝 ≤s 𝑙 ) |
20 |
|
leftssno |
⊢ ( L ‘ 𝐴 ) ⊆ No |
21 |
20
|
sseli |
⊢ ( 𝑝 ∈ ( L ‘ 𝐴 ) → 𝑝 ∈ No ) |
22 |
21
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( L ‘ 𝐴 ) ) ∧ 𝑙 ∈ 𝐿 ) → 𝑝 ∈ No ) |
23 |
|
ssltss1 |
⊢ ( 𝐿 <<s 𝑅 → 𝐿 ⊆ No ) |
24 |
1 23
|
syl |
⊢ ( 𝜑 → 𝐿 ⊆ No ) |
25 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( L ‘ 𝐴 ) ) → 𝐿 ⊆ No ) |
26 |
25
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( L ‘ 𝐴 ) ) ∧ 𝑙 ∈ 𝐿 ) → 𝑙 ∈ No ) |
27 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( L ‘ 𝐴 ) ) ∧ 𝑙 ∈ 𝐿 ) → 𝐵 ∈ No ) |
28 |
22 26 27
|
sleadd1d |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( L ‘ 𝐴 ) ) ∧ 𝑙 ∈ 𝐿 ) → ( 𝑝 ≤s 𝑙 ↔ ( 𝑝 +s 𝐵 ) ≤s ( 𝑙 +s 𝐵 ) ) ) |
29 |
28
|
rexbidva |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( L ‘ 𝐴 ) ) → ( ∃ 𝑙 ∈ 𝐿 𝑝 ≤s 𝑙 ↔ ∃ 𝑙 ∈ 𝐿 ( 𝑝 +s 𝐵 ) ≤s ( 𝑙 +s 𝐵 ) ) ) |
30 |
29
|
ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑙 ∈ 𝐿 𝑝 ≤s 𝑙 ↔ ∀ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑙 ∈ 𝐿 ( 𝑝 +s 𝐵 ) ≤s ( 𝑙 +s 𝐵 ) ) ) |
31 |
19 30
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑙 ∈ 𝐿 ( 𝑝 +s 𝐵 ) ≤s ( 𝑙 +s 𝐵 ) ) |
32 |
|
eqeq1 |
⊢ ( 𝑦 = 𝑠 → ( 𝑦 = ( 𝑙 +s 𝐵 ) ↔ 𝑠 = ( 𝑙 +s 𝐵 ) ) ) |
33 |
32
|
rexbidv |
⊢ ( 𝑦 = 𝑠 → ( ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) ↔ ∃ 𝑙 ∈ 𝐿 𝑠 = ( 𝑙 +s 𝐵 ) ) ) |
34 |
33
|
rexab |
⊢ ( ∃ 𝑠 ∈ { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ( 𝑝 +s 𝐵 ) ≤s 𝑠 ↔ ∃ 𝑠 ( ∃ 𝑙 ∈ 𝐿 𝑠 = ( 𝑙 +s 𝐵 ) ∧ ( 𝑝 +s 𝐵 ) ≤s 𝑠 ) ) |
35 |
|
rexcom4 |
⊢ ( ∃ 𝑙 ∈ 𝐿 ∃ 𝑠 ( 𝑠 = ( 𝑙 +s 𝐵 ) ∧ ( 𝑝 +s 𝐵 ) ≤s 𝑠 ) ↔ ∃ 𝑠 ∃ 𝑙 ∈ 𝐿 ( 𝑠 = ( 𝑙 +s 𝐵 ) ∧ ( 𝑝 +s 𝐵 ) ≤s 𝑠 ) ) |
36 |
|
ovex |
⊢ ( 𝑙 +s 𝐵 ) ∈ V |
37 |
|
breq2 |
⊢ ( 𝑠 = ( 𝑙 +s 𝐵 ) → ( ( 𝑝 +s 𝐵 ) ≤s 𝑠 ↔ ( 𝑝 +s 𝐵 ) ≤s ( 𝑙 +s 𝐵 ) ) ) |
38 |
36 37
|
ceqsexv |
⊢ ( ∃ 𝑠 ( 𝑠 = ( 𝑙 +s 𝐵 ) ∧ ( 𝑝 +s 𝐵 ) ≤s 𝑠 ) ↔ ( 𝑝 +s 𝐵 ) ≤s ( 𝑙 +s 𝐵 ) ) |
39 |
38
|
rexbii |
⊢ ( ∃ 𝑙 ∈ 𝐿 ∃ 𝑠 ( 𝑠 = ( 𝑙 +s 𝐵 ) ∧ ( 𝑝 +s 𝐵 ) ≤s 𝑠 ) ↔ ∃ 𝑙 ∈ 𝐿 ( 𝑝 +s 𝐵 ) ≤s ( 𝑙 +s 𝐵 ) ) |
40 |
|
r19.41v |
⊢ ( ∃ 𝑙 ∈ 𝐿 ( 𝑠 = ( 𝑙 +s 𝐵 ) ∧ ( 𝑝 +s 𝐵 ) ≤s 𝑠 ) ↔ ( ∃ 𝑙 ∈ 𝐿 𝑠 = ( 𝑙 +s 𝐵 ) ∧ ( 𝑝 +s 𝐵 ) ≤s 𝑠 ) ) |
41 |
40
|
exbii |
⊢ ( ∃ 𝑠 ∃ 𝑙 ∈ 𝐿 ( 𝑠 = ( 𝑙 +s 𝐵 ) ∧ ( 𝑝 +s 𝐵 ) ≤s 𝑠 ) ↔ ∃ 𝑠 ( ∃ 𝑙 ∈ 𝐿 𝑠 = ( 𝑙 +s 𝐵 ) ∧ ( 𝑝 +s 𝐵 ) ≤s 𝑠 ) ) |
42 |
35 39 41
|
3bitr3ri |
⊢ ( ∃ 𝑠 ( ∃ 𝑙 ∈ 𝐿 𝑠 = ( 𝑙 +s 𝐵 ) ∧ ( 𝑝 +s 𝐵 ) ≤s 𝑠 ) ↔ ∃ 𝑙 ∈ 𝐿 ( 𝑝 +s 𝐵 ) ≤s ( 𝑙 +s 𝐵 ) ) |
43 |
34 42
|
bitri |
⊢ ( ∃ 𝑠 ∈ { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ( 𝑝 +s 𝐵 ) ≤s 𝑠 ↔ ∃ 𝑙 ∈ 𝐿 ( 𝑝 +s 𝐵 ) ≤s ( 𝑙 +s 𝐵 ) ) |
44 |
|
ssun1 |
⊢ { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ⊆ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) |
45 |
|
ssrexv |
⊢ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ⊆ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) → ( ∃ 𝑠 ∈ { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ( 𝑝 +s 𝐵 ) ≤s 𝑠 → ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) ( 𝑝 +s 𝐵 ) ≤s 𝑠 ) ) |
46 |
44 45
|
ax-mp |
⊢ ( ∃ 𝑠 ∈ { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ( 𝑝 +s 𝐵 ) ≤s 𝑠 → ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) ( 𝑝 +s 𝐵 ) ≤s 𝑠 ) |
47 |
43 46
|
sylbir |
⊢ ( ∃ 𝑙 ∈ 𝐿 ( 𝑝 +s 𝐵 ) ≤s ( 𝑙 +s 𝐵 ) → ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) ( 𝑝 +s 𝐵 ) ≤s 𝑠 ) |
48 |
47
|
ralimi |
⊢ ( ∀ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑙 ∈ 𝐿 ( 𝑝 +s 𝐵 ) ≤s ( 𝑙 +s 𝐵 ) → ∀ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) ( 𝑝 +s 𝐵 ) ≤s 𝑠 ) |
49 |
31 48
|
syl |
⊢ ( 𝜑 → ∀ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) ( 𝑝 +s 𝐵 ) ≤s 𝑠 ) |
50 |
2 4
|
cofcutr1d |
⊢ ( 𝜑 → ∀ 𝑞 ∈ ( L ‘ 𝐵 ) ∃ 𝑚 ∈ 𝑀 𝑞 ≤s 𝑚 ) |
51 |
|
leftssno |
⊢ ( L ‘ 𝐵 ) ⊆ No |
52 |
51
|
sseli |
⊢ ( 𝑞 ∈ ( L ‘ 𝐵 ) → 𝑞 ∈ No ) |
53 |
52
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ∧ 𝑚 ∈ 𝑀 ) → 𝑞 ∈ No ) |
54 |
|
ssltss1 |
⊢ ( 𝑀 <<s 𝑆 → 𝑀 ⊆ No ) |
55 |
2 54
|
syl |
⊢ ( 𝜑 → 𝑀 ⊆ No ) |
56 |
55
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) → 𝑀 ⊆ No ) |
57 |
56
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ∧ 𝑚 ∈ 𝑀 ) → 𝑚 ∈ No ) |
58 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ∧ 𝑚 ∈ 𝑀 ) → 𝐴 ∈ No ) |
59 |
53 57 58
|
sleadd2d |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ∧ 𝑚 ∈ 𝑀 ) → ( 𝑞 ≤s 𝑚 ↔ ( 𝐴 +s 𝑞 ) ≤s ( 𝐴 +s 𝑚 ) ) ) |
60 |
59
|
rexbidva |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) → ( ∃ 𝑚 ∈ 𝑀 𝑞 ≤s 𝑚 ↔ ∃ 𝑚 ∈ 𝑀 ( 𝐴 +s 𝑞 ) ≤s ( 𝐴 +s 𝑚 ) ) ) |
61 |
60
|
ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑞 ∈ ( L ‘ 𝐵 ) ∃ 𝑚 ∈ 𝑀 𝑞 ≤s 𝑚 ↔ ∀ 𝑞 ∈ ( L ‘ 𝐵 ) ∃ 𝑚 ∈ 𝑀 ( 𝐴 +s 𝑞 ) ≤s ( 𝐴 +s 𝑚 ) ) ) |
62 |
50 61
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑞 ∈ ( L ‘ 𝐵 ) ∃ 𝑚 ∈ 𝑀 ( 𝐴 +s 𝑞 ) ≤s ( 𝐴 +s 𝑚 ) ) |
63 |
|
eqeq1 |
⊢ ( 𝑧 = 𝑠 → ( 𝑧 = ( 𝐴 +s 𝑚 ) ↔ 𝑠 = ( 𝐴 +s 𝑚 ) ) ) |
64 |
63
|
rexbidv |
⊢ ( 𝑧 = 𝑠 → ( ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) ↔ ∃ 𝑚 ∈ 𝑀 𝑠 = ( 𝐴 +s 𝑚 ) ) ) |
65 |
64
|
rexab |
⊢ ( ∃ 𝑠 ∈ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ( 𝐴 +s 𝑞 ) ≤s 𝑠 ↔ ∃ 𝑠 ( ∃ 𝑚 ∈ 𝑀 𝑠 = ( 𝐴 +s 𝑚 ) ∧ ( 𝐴 +s 𝑞 ) ≤s 𝑠 ) ) |
66 |
|
rexcom4 |
⊢ ( ∃ 𝑚 ∈ 𝑀 ∃ 𝑠 ( 𝑠 = ( 𝐴 +s 𝑚 ) ∧ ( 𝐴 +s 𝑞 ) ≤s 𝑠 ) ↔ ∃ 𝑠 ∃ 𝑚 ∈ 𝑀 ( 𝑠 = ( 𝐴 +s 𝑚 ) ∧ ( 𝐴 +s 𝑞 ) ≤s 𝑠 ) ) |
67 |
|
ovex |
⊢ ( 𝐴 +s 𝑚 ) ∈ V |
68 |
|
breq2 |
⊢ ( 𝑠 = ( 𝐴 +s 𝑚 ) → ( ( 𝐴 +s 𝑞 ) ≤s 𝑠 ↔ ( 𝐴 +s 𝑞 ) ≤s ( 𝐴 +s 𝑚 ) ) ) |
69 |
67 68
|
ceqsexv |
⊢ ( ∃ 𝑠 ( 𝑠 = ( 𝐴 +s 𝑚 ) ∧ ( 𝐴 +s 𝑞 ) ≤s 𝑠 ) ↔ ( 𝐴 +s 𝑞 ) ≤s ( 𝐴 +s 𝑚 ) ) |
70 |
69
|
rexbii |
⊢ ( ∃ 𝑚 ∈ 𝑀 ∃ 𝑠 ( 𝑠 = ( 𝐴 +s 𝑚 ) ∧ ( 𝐴 +s 𝑞 ) ≤s 𝑠 ) ↔ ∃ 𝑚 ∈ 𝑀 ( 𝐴 +s 𝑞 ) ≤s ( 𝐴 +s 𝑚 ) ) |
71 |
|
r19.41v |
⊢ ( ∃ 𝑚 ∈ 𝑀 ( 𝑠 = ( 𝐴 +s 𝑚 ) ∧ ( 𝐴 +s 𝑞 ) ≤s 𝑠 ) ↔ ( ∃ 𝑚 ∈ 𝑀 𝑠 = ( 𝐴 +s 𝑚 ) ∧ ( 𝐴 +s 𝑞 ) ≤s 𝑠 ) ) |
72 |
71
|
exbii |
⊢ ( ∃ 𝑠 ∃ 𝑚 ∈ 𝑀 ( 𝑠 = ( 𝐴 +s 𝑚 ) ∧ ( 𝐴 +s 𝑞 ) ≤s 𝑠 ) ↔ ∃ 𝑠 ( ∃ 𝑚 ∈ 𝑀 𝑠 = ( 𝐴 +s 𝑚 ) ∧ ( 𝐴 +s 𝑞 ) ≤s 𝑠 ) ) |
73 |
66 70 72
|
3bitr3ri |
⊢ ( ∃ 𝑠 ( ∃ 𝑚 ∈ 𝑀 𝑠 = ( 𝐴 +s 𝑚 ) ∧ ( 𝐴 +s 𝑞 ) ≤s 𝑠 ) ↔ ∃ 𝑚 ∈ 𝑀 ( 𝐴 +s 𝑞 ) ≤s ( 𝐴 +s 𝑚 ) ) |
74 |
65 73
|
bitri |
⊢ ( ∃ 𝑠 ∈ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ( 𝐴 +s 𝑞 ) ≤s 𝑠 ↔ ∃ 𝑚 ∈ 𝑀 ( 𝐴 +s 𝑞 ) ≤s ( 𝐴 +s 𝑚 ) ) |
75 |
|
ssun2 |
⊢ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ⊆ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) |
76 |
|
ssrexv |
⊢ ( { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ⊆ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) → ( ∃ 𝑠 ∈ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ( 𝐴 +s 𝑞 ) ≤s 𝑠 → ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) ( 𝐴 +s 𝑞 ) ≤s 𝑠 ) ) |
77 |
75 76
|
ax-mp |
⊢ ( ∃ 𝑠 ∈ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ( 𝐴 +s 𝑞 ) ≤s 𝑠 → ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) ( 𝐴 +s 𝑞 ) ≤s 𝑠 ) |
78 |
74 77
|
sylbir |
⊢ ( ∃ 𝑚 ∈ 𝑀 ( 𝐴 +s 𝑞 ) ≤s ( 𝐴 +s 𝑚 ) → ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) ( 𝐴 +s 𝑞 ) ≤s 𝑠 ) |
79 |
78
|
ralimi |
⊢ ( ∀ 𝑞 ∈ ( L ‘ 𝐵 ) ∃ 𝑚 ∈ 𝑀 ( 𝐴 +s 𝑞 ) ≤s ( 𝐴 +s 𝑚 ) → ∀ 𝑞 ∈ ( L ‘ 𝐵 ) ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) ( 𝐴 +s 𝑞 ) ≤s 𝑠 ) |
80 |
62 79
|
syl |
⊢ ( 𝜑 → ∀ 𝑞 ∈ ( L ‘ 𝐵 ) ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) ( 𝐴 +s 𝑞 ) ≤s 𝑠 ) |
81 |
|
ralunb |
⊢ ( ∀ 𝑟 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) 𝑎 = ( 𝑝 +s 𝐵 ) } ∪ { 𝑏 ∣ ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑏 = ( 𝐴 +s 𝑞 ) } ) ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) 𝑟 ≤s 𝑠 ↔ ( ∀ 𝑟 ∈ { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) 𝑎 = ( 𝑝 +s 𝐵 ) } ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) 𝑟 ≤s 𝑠 ∧ ∀ 𝑟 ∈ { 𝑏 ∣ ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑏 = ( 𝐴 +s 𝑞 ) } ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) 𝑟 ≤s 𝑠 ) ) |
82 |
|
eqeq1 |
⊢ ( 𝑎 = 𝑟 → ( 𝑎 = ( 𝑝 +s 𝐵 ) ↔ 𝑟 = ( 𝑝 +s 𝐵 ) ) ) |
83 |
82
|
rexbidv |
⊢ ( 𝑎 = 𝑟 → ( ∃ 𝑝 ∈ ( L ‘ 𝐴 ) 𝑎 = ( 𝑝 +s 𝐵 ) ↔ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) 𝑟 = ( 𝑝 +s 𝐵 ) ) ) |
84 |
83
|
ralab |
⊢ ( ∀ 𝑟 ∈ { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) 𝑎 = ( 𝑝 +s 𝐵 ) } ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) 𝑟 ≤s 𝑠 ↔ ∀ 𝑟 ( ∃ 𝑝 ∈ ( L ‘ 𝐴 ) 𝑟 = ( 𝑝 +s 𝐵 ) → ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) 𝑟 ≤s 𝑠 ) ) |
85 |
|
ralcom4 |
⊢ ( ∀ 𝑝 ∈ ( L ‘ 𝐴 ) ∀ 𝑟 ( 𝑟 = ( 𝑝 +s 𝐵 ) → ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) 𝑟 ≤s 𝑠 ) ↔ ∀ 𝑟 ∀ 𝑝 ∈ ( L ‘ 𝐴 ) ( 𝑟 = ( 𝑝 +s 𝐵 ) → ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) 𝑟 ≤s 𝑠 ) ) |
86 |
|
ovex |
⊢ ( 𝑝 +s 𝐵 ) ∈ V |
87 |
|
breq1 |
⊢ ( 𝑟 = ( 𝑝 +s 𝐵 ) → ( 𝑟 ≤s 𝑠 ↔ ( 𝑝 +s 𝐵 ) ≤s 𝑠 ) ) |
88 |
87
|
rexbidv |
⊢ ( 𝑟 = ( 𝑝 +s 𝐵 ) → ( ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) 𝑟 ≤s 𝑠 ↔ ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) ( 𝑝 +s 𝐵 ) ≤s 𝑠 ) ) |
89 |
86 88
|
ceqsalv |
⊢ ( ∀ 𝑟 ( 𝑟 = ( 𝑝 +s 𝐵 ) → ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) 𝑟 ≤s 𝑠 ) ↔ ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) ( 𝑝 +s 𝐵 ) ≤s 𝑠 ) |
90 |
89
|
ralbii |
⊢ ( ∀ 𝑝 ∈ ( L ‘ 𝐴 ) ∀ 𝑟 ( 𝑟 = ( 𝑝 +s 𝐵 ) → ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) 𝑟 ≤s 𝑠 ) ↔ ∀ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) ( 𝑝 +s 𝐵 ) ≤s 𝑠 ) |
91 |
|
r19.23v |
⊢ ( ∀ 𝑝 ∈ ( L ‘ 𝐴 ) ( 𝑟 = ( 𝑝 +s 𝐵 ) → ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) 𝑟 ≤s 𝑠 ) ↔ ( ∃ 𝑝 ∈ ( L ‘ 𝐴 ) 𝑟 = ( 𝑝 +s 𝐵 ) → ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) 𝑟 ≤s 𝑠 ) ) |
92 |
91
|
albii |
⊢ ( ∀ 𝑟 ∀ 𝑝 ∈ ( L ‘ 𝐴 ) ( 𝑟 = ( 𝑝 +s 𝐵 ) → ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) 𝑟 ≤s 𝑠 ) ↔ ∀ 𝑟 ( ∃ 𝑝 ∈ ( L ‘ 𝐴 ) 𝑟 = ( 𝑝 +s 𝐵 ) → ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) 𝑟 ≤s 𝑠 ) ) |
93 |
85 90 92
|
3bitr3ri |
⊢ ( ∀ 𝑟 ( ∃ 𝑝 ∈ ( L ‘ 𝐴 ) 𝑟 = ( 𝑝 +s 𝐵 ) → ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) 𝑟 ≤s 𝑠 ) ↔ ∀ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) ( 𝑝 +s 𝐵 ) ≤s 𝑠 ) |
94 |
84 93
|
bitri |
⊢ ( ∀ 𝑟 ∈ { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) 𝑎 = ( 𝑝 +s 𝐵 ) } ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) 𝑟 ≤s 𝑠 ↔ ∀ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) ( 𝑝 +s 𝐵 ) ≤s 𝑠 ) |
95 |
|
eqeq1 |
⊢ ( 𝑏 = 𝑟 → ( 𝑏 = ( 𝐴 +s 𝑞 ) ↔ 𝑟 = ( 𝐴 +s 𝑞 ) ) ) |
96 |
95
|
rexbidv |
⊢ ( 𝑏 = 𝑟 → ( ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑏 = ( 𝐴 +s 𝑞 ) ↔ ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑟 = ( 𝐴 +s 𝑞 ) ) ) |
97 |
96
|
ralab |
⊢ ( ∀ 𝑟 ∈ { 𝑏 ∣ ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑏 = ( 𝐴 +s 𝑞 ) } ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) 𝑟 ≤s 𝑠 ↔ ∀ 𝑟 ( ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑟 = ( 𝐴 +s 𝑞 ) → ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) 𝑟 ≤s 𝑠 ) ) |
98 |
|
ralcom4 |
⊢ ( ∀ 𝑞 ∈ ( L ‘ 𝐵 ) ∀ 𝑟 ( 𝑟 = ( 𝐴 +s 𝑞 ) → ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) 𝑟 ≤s 𝑠 ) ↔ ∀ 𝑟 ∀ 𝑞 ∈ ( L ‘ 𝐵 ) ( 𝑟 = ( 𝐴 +s 𝑞 ) → ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) 𝑟 ≤s 𝑠 ) ) |
99 |
|
ovex |
⊢ ( 𝐴 +s 𝑞 ) ∈ V |
100 |
|
breq1 |
⊢ ( 𝑟 = ( 𝐴 +s 𝑞 ) → ( 𝑟 ≤s 𝑠 ↔ ( 𝐴 +s 𝑞 ) ≤s 𝑠 ) ) |
101 |
100
|
rexbidv |
⊢ ( 𝑟 = ( 𝐴 +s 𝑞 ) → ( ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) 𝑟 ≤s 𝑠 ↔ ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) ( 𝐴 +s 𝑞 ) ≤s 𝑠 ) ) |
102 |
99 101
|
ceqsalv |
⊢ ( ∀ 𝑟 ( 𝑟 = ( 𝐴 +s 𝑞 ) → ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) 𝑟 ≤s 𝑠 ) ↔ ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) ( 𝐴 +s 𝑞 ) ≤s 𝑠 ) |
103 |
102
|
ralbii |
⊢ ( ∀ 𝑞 ∈ ( L ‘ 𝐵 ) ∀ 𝑟 ( 𝑟 = ( 𝐴 +s 𝑞 ) → ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) 𝑟 ≤s 𝑠 ) ↔ ∀ 𝑞 ∈ ( L ‘ 𝐵 ) ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) ( 𝐴 +s 𝑞 ) ≤s 𝑠 ) |
104 |
|
r19.23v |
⊢ ( ∀ 𝑞 ∈ ( L ‘ 𝐵 ) ( 𝑟 = ( 𝐴 +s 𝑞 ) → ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) 𝑟 ≤s 𝑠 ) ↔ ( ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑟 = ( 𝐴 +s 𝑞 ) → ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) 𝑟 ≤s 𝑠 ) ) |
105 |
104
|
albii |
⊢ ( ∀ 𝑟 ∀ 𝑞 ∈ ( L ‘ 𝐵 ) ( 𝑟 = ( 𝐴 +s 𝑞 ) → ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) 𝑟 ≤s 𝑠 ) ↔ ∀ 𝑟 ( ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑟 = ( 𝐴 +s 𝑞 ) → ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) 𝑟 ≤s 𝑠 ) ) |
106 |
98 103 105
|
3bitr3ri |
⊢ ( ∀ 𝑟 ( ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑟 = ( 𝐴 +s 𝑞 ) → ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) 𝑟 ≤s 𝑠 ) ↔ ∀ 𝑞 ∈ ( L ‘ 𝐵 ) ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) ( 𝐴 +s 𝑞 ) ≤s 𝑠 ) |
107 |
97 106
|
bitri |
⊢ ( ∀ 𝑟 ∈ { 𝑏 ∣ ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑏 = ( 𝐴 +s 𝑞 ) } ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) 𝑟 ≤s 𝑠 ↔ ∀ 𝑞 ∈ ( L ‘ 𝐵 ) ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) ( 𝐴 +s 𝑞 ) ≤s 𝑠 ) |
108 |
94 107
|
anbi12i |
⊢ ( ( ∀ 𝑟 ∈ { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) 𝑎 = ( 𝑝 +s 𝐵 ) } ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) 𝑟 ≤s 𝑠 ∧ ∀ 𝑟 ∈ { 𝑏 ∣ ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑏 = ( 𝐴 +s 𝑞 ) } ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) 𝑟 ≤s 𝑠 ) ↔ ( ∀ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) ( 𝑝 +s 𝐵 ) ≤s 𝑠 ∧ ∀ 𝑞 ∈ ( L ‘ 𝐵 ) ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) ( 𝐴 +s 𝑞 ) ≤s 𝑠 ) ) |
109 |
81 108
|
bitri |
⊢ ( ∀ 𝑟 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) 𝑎 = ( 𝑝 +s 𝐵 ) } ∪ { 𝑏 ∣ ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑏 = ( 𝐴 +s 𝑞 ) } ) ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) 𝑟 ≤s 𝑠 ↔ ( ∀ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) ( 𝑝 +s 𝐵 ) ≤s 𝑠 ∧ ∀ 𝑞 ∈ ( L ‘ 𝐵 ) ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) ( 𝐴 +s 𝑞 ) ≤s 𝑠 ) ) |
110 |
49 80 109
|
sylanbrc |
⊢ ( 𝜑 → ∀ 𝑟 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) 𝑎 = ( 𝑝 +s 𝐵 ) } ∪ { 𝑏 ∣ ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑏 = ( 𝐴 +s 𝑞 ) } ) ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) 𝑟 ≤s 𝑠 ) |
111 |
1 3
|
cofcutr2d |
⊢ ( 𝜑 → ∀ 𝑒 ∈ ( R ‘ 𝐴 ) ∃ 𝑟 ∈ 𝑅 𝑟 ≤s 𝑒 ) |
112 |
|
ssltss2 |
⊢ ( 𝐿 <<s 𝑅 → 𝑅 ⊆ No ) |
113 |
1 112
|
syl |
⊢ ( 𝜑 → 𝑅 ⊆ No ) |
114 |
113
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( R ‘ 𝐴 ) ) → 𝑅 ⊆ No ) |
115 |
114
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ( R ‘ 𝐴 ) ) ∧ 𝑟 ∈ 𝑅 ) → 𝑟 ∈ No ) |
116 |
|
rightssno |
⊢ ( R ‘ 𝐴 ) ⊆ No |
117 |
116
|
sseli |
⊢ ( 𝑒 ∈ ( R ‘ 𝐴 ) → 𝑒 ∈ No ) |
118 |
117
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ( R ‘ 𝐴 ) ) ∧ 𝑟 ∈ 𝑅 ) → 𝑒 ∈ No ) |
119 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ( R ‘ 𝐴 ) ) ∧ 𝑟 ∈ 𝑅 ) → 𝐵 ∈ No ) |
120 |
115 118 119
|
sleadd1d |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ( R ‘ 𝐴 ) ) ∧ 𝑟 ∈ 𝑅 ) → ( 𝑟 ≤s 𝑒 ↔ ( 𝑟 +s 𝐵 ) ≤s ( 𝑒 +s 𝐵 ) ) ) |
121 |
120
|
rexbidva |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( R ‘ 𝐴 ) ) → ( ∃ 𝑟 ∈ 𝑅 𝑟 ≤s 𝑒 ↔ ∃ 𝑟 ∈ 𝑅 ( 𝑟 +s 𝐵 ) ≤s ( 𝑒 +s 𝐵 ) ) ) |
122 |
121
|
ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑒 ∈ ( R ‘ 𝐴 ) ∃ 𝑟 ∈ 𝑅 𝑟 ≤s 𝑒 ↔ ∀ 𝑒 ∈ ( R ‘ 𝐴 ) ∃ 𝑟 ∈ 𝑅 ( 𝑟 +s 𝐵 ) ≤s ( 𝑒 +s 𝐵 ) ) ) |
123 |
111 122
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑒 ∈ ( R ‘ 𝐴 ) ∃ 𝑟 ∈ 𝑅 ( 𝑟 +s 𝐵 ) ≤s ( 𝑒 +s 𝐵 ) ) |
124 |
|
eqeq1 |
⊢ ( 𝑤 = 𝑏 → ( 𝑤 = ( 𝑟 +s 𝐵 ) ↔ 𝑏 = ( 𝑟 +s 𝐵 ) ) ) |
125 |
124
|
rexbidv |
⊢ ( 𝑤 = 𝑏 → ( ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) ↔ ∃ 𝑟 ∈ 𝑅 𝑏 = ( 𝑟 +s 𝐵 ) ) ) |
126 |
125
|
rexab |
⊢ ( ∃ 𝑏 ∈ { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } 𝑏 ≤s ( 𝑒 +s 𝐵 ) ↔ ∃ 𝑏 ( ∃ 𝑟 ∈ 𝑅 𝑏 = ( 𝑟 +s 𝐵 ) ∧ 𝑏 ≤s ( 𝑒 +s 𝐵 ) ) ) |
127 |
|
rexcom4 |
⊢ ( ∃ 𝑟 ∈ 𝑅 ∃ 𝑏 ( 𝑏 = ( 𝑟 +s 𝐵 ) ∧ 𝑏 ≤s ( 𝑒 +s 𝐵 ) ) ↔ ∃ 𝑏 ∃ 𝑟 ∈ 𝑅 ( 𝑏 = ( 𝑟 +s 𝐵 ) ∧ 𝑏 ≤s ( 𝑒 +s 𝐵 ) ) ) |
128 |
|
ovex |
⊢ ( 𝑟 +s 𝐵 ) ∈ V |
129 |
|
breq1 |
⊢ ( 𝑏 = ( 𝑟 +s 𝐵 ) → ( 𝑏 ≤s ( 𝑒 +s 𝐵 ) ↔ ( 𝑟 +s 𝐵 ) ≤s ( 𝑒 +s 𝐵 ) ) ) |
130 |
128 129
|
ceqsexv |
⊢ ( ∃ 𝑏 ( 𝑏 = ( 𝑟 +s 𝐵 ) ∧ 𝑏 ≤s ( 𝑒 +s 𝐵 ) ) ↔ ( 𝑟 +s 𝐵 ) ≤s ( 𝑒 +s 𝐵 ) ) |
131 |
130
|
rexbii |
⊢ ( ∃ 𝑟 ∈ 𝑅 ∃ 𝑏 ( 𝑏 = ( 𝑟 +s 𝐵 ) ∧ 𝑏 ≤s ( 𝑒 +s 𝐵 ) ) ↔ ∃ 𝑟 ∈ 𝑅 ( 𝑟 +s 𝐵 ) ≤s ( 𝑒 +s 𝐵 ) ) |
132 |
|
r19.41v |
⊢ ( ∃ 𝑟 ∈ 𝑅 ( 𝑏 = ( 𝑟 +s 𝐵 ) ∧ 𝑏 ≤s ( 𝑒 +s 𝐵 ) ) ↔ ( ∃ 𝑟 ∈ 𝑅 𝑏 = ( 𝑟 +s 𝐵 ) ∧ 𝑏 ≤s ( 𝑒 +s 𝐵 ) ) ) |
133 |
132
|
exbii |
⊢ ( ∃ 𝑏 ∃ 𝑟 ∈ 𝑅 ( 𝑏 = ( 𝑟 +s 𝐵 ) ∧ 𝑏 ≤s ( 𝑒 +s 𝐵 ) ) ↔ ∃ 𝑏 ( ∃ 𝑟 ∈ 𝑅 𝑏 = ( 𝑟 +s 𝐵 ) ∧ 𝑏 ≤s ( 𝑒 +s 𝐵 ) ) ) |
134 |
127 131 133
|
3bitr3ri |
⊢ ( ∃ 𝑏 ( ∃ 𝑟 ∈ 𝑅 𝑏 = ( 𝑟 +s 𝐵 ) ∧ 𝑏 ≤s ( 𝑒 +s 𝐵 ) ) ↔ ∃ 𝑟 ∈ 𝑅 ( 𝑟 +s 𝐵 ) ≤s ( 𝑒 +s 𝐵 ) ) |
135 |
126 134
|
bitri |
⊢ ( ∃ 𝑏 ∈ { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } 𝑏 ≤s ( 𝑒 +s 𝐵 ) ↔ ∃ 𝑟 ∈ 𝑅 ( 𝑟 +s 𝐵 ) ≤s ( 𝑒 +s 𝐵 ) ) |
136 |
|
ssun1 |
⊢ { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ⊆ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) |
137 |
|
ssrexv |
⊢ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ⊆ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) → ( ∃ 𝑏 ∈ { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } 𝑏 ≤s ( 𝑒 +s 𝐵 ) → ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s ( 𝑒 +s 𝐵 ) ) ) |
138 |
136 137
|
ax-mp |
⊢ ( ∃ 𝑏 ∈ { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } 𝑏 ≤s ( 𝑒 +s 𝐵 ) → ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s ( 𝑒 +s 𝐵 ) ) |
139 |
135 138
|
sylbir |
⊢ ( ∃ 𝑟 ∈ 𝑅 ( 𝑟 +s 𝐵 ) ≤s ( 𝑒 +s 𝐵 ) → ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s ( 𝑒 +s 𝐵 ) ) |
140 |
139
|
ralimi |
⊢ ( ∀ 𝑒 ∈ ( R ‘ 𝐴 ) ∃ 𝑟 ∈ 𝑅 ( 𝑟 +s 𝐵 ) ≤s ( 𝑒 +s 𝐵 ) → ∀ 𝑒 ∈ ( R ‘ 𝐴 ) ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s ( 𝑒 +s 𝐵 ) ) |
141 |
123 140
|
syl |
⊢ ( 𝜑 → ∀ 𝑒 ∈ ( R ‘ 𝐴 ) ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s ( 𝑒 +s 𝐵 ) ) |
142 |
2 4
|
cofcutr2d |
⊢ ( 𝜑 → ∀ 𝑓 ∈ ( R ‘ 𝐵 ) ∃ 𝑠 ∈ 𝑆 𝑠 ≤s 𝑓 ) |
143 |
|
ssltss2 |
⊢ ( 𝑀 <<s 𝑆 → 𝑆 ⊆ No ) |
144 |
2 143
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ No ) |
145 |
144
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( R ‘ 𝐵 ) ) → 𝑆 ⊆ No ) |
146 |
145
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( R ‘ 𝐵 ) ) ∧ 𝑠 ∈ 𝑆 ) → 𝑠 ∈ No ) |
147 |
|
rightssno |
⊢ ( R ‘ 𝐵 ) ⊆ No |
148 |
147
|
sseli |
⊢ ( 𝑓 ∈ ( R ‘ 𝐵 ) → 𝑓 ∈ No ) |
149 |
148
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( R ‘ 𝐵 ) ) ∧ 𝑠 ∈ 𝑆 ) → 𝑓 ∈ No ) |
150 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( R ‘ 𝐵 ) ) ∧ 𝑠 ∈ 𝑆 ) → 𝐴 ∈ No ) |
151 |
146 149 150
|
sleadd2d |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( R ‘ 𝐵 ) ) ∧ 𝑠 ∈ 𝑆 ) → ( 𝑠 ≤s 𝑓 ↔ ( 𝐴 +s 𝑠 ) ≤s ( 𝐴 +s 𝑓 ) ) ) |
152 |
151
|
rexbidva |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( R ‘ 𝐵 ) ) → ( ∃ 𝑠 ∈ 𝑆 𝑠 ≤s 𝑓 ↔ ∃ 𝑠 ∈ 𝑆 ( 𝐴 +s 𝑠 ) ≤s ( 𝐴 +s 𝑓 ) ) ) |
153 |
152
|
ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑓 ∈ ( R ‘ 𝐵 ) ∃ 𝑠 ∈ 𝑆 𝑠 ≤s 𝑓 ↔ ∀ 𝑓 ∈ ( R ‘ 𝐵 ) ∃ 𝑠 ∈ 𝑆 ( 𝐴 +s 𝑠 ) ≤s ( 𝐴 +s 𝑓 ) ) ) |
154 |
142 153
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑓 ∈ ( R ‘ 𝐵 ) ∃ 𝑠 ∈ 𝑆 ( 𝐴 +s 𝑠 ) ≤s ( 𝐴 +s 𝑓 ) ) |
155 |
|
eqeq1 |
⊢ ( 𝑡 = 𝑏 → ( 𝑡 = ( 𝐴 +s 𝑠 ) ↔ 𝑏 = ( 𝐴 +s 𝑠 ) ) ) |
156 |
155
|
rexbidv |
⊢ ( 𝑡 = 𝑏 → ( ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) ↔ ∃ 𝑠 ∈ 𝑆 𝑏 = ( 𝐴 +s 𝑠 ) ) ) |
157 |
156
|
rexab |
⊢ ( ∃ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } 𝑏 ≤s ( 𝐴 +s 𝑓 ) ↔ ∃ 𝑏 ( ∃ 𝑠 ∈ 𝑆 𝑏 = ( 𝐴 +s 𝑠 ) ∧ 𝑏 ≤s ( 𝐴 +s 𝑓 ) ) ) |
158 |
|
rexcom4 |
⊢ ( ∃ 𝑠 ∈ 𝑆 ∃ 𝑏 ( 𝑏 = ( 𝐴 +s 𝑠 ) ∧ 𝑏 ≤s ( 𝐴 +s 𝑓 ) ) ↔ ∃ 𝑏 ∃ 𝑠 ∈ 𝑆 ( 𝑏 = ( 𝐴 +s 𝑠 ) ∧ 𝑏 ≤s ( 𝐴 +s 𝑓 ) ) ) |
159 |
|
ovex |
⊢ ( 𝐴 +s 𝑠 ) ∈ V |
160 |
|
breq1 |
⊢ ( 𝑏 = ( 𝐴 +s 𝑠 ) → ( 𝑏 ≤s ( 𝐴 +s 𝑓 ) ↔ ( 𝐴 +s 𝑠 ) ≤s ( 𝐴 +s 𝑓 ) ) ) |
161 |
159 160
|
ceqsexv |
⊢ ( ∃ 𝑏 ( 𝑏 = ( 𝐴 +s 𝑠 ) ∧ 𝑏 ≤s ( 𝐴 +s 𝑓 ) ) ↔ ( 𝐴 +s 𝑠 ) ≤s ( 𝐴 +s 𝑓 ) ) |
162 |
161
|
rexbii |
⊢ ( ∃ 𝑠 ∈ 𝑆 ∃ 𝑏 ( 𝑏 = ( 𝐴 +s 𝑠 ) ∧ 𝑏 ≤s ( 𝐴 +s 𝑓 ) ) ↔ ∃ 𝑠 ∈ 𝑆 ( 𝐴 +s 𝑠 ) ≤s ( 𝐴 +s 𝑓 ) ) |
163 |
|
r19.41v |
⊢ ( ∃ 𝑠 ∈ 𝑆 ( 𝑏 = ( 𝐴 +s 𝑠 ) ∧ 𝑏 ≤s ( 𝐴 +s 𝑓 ) ) ↔ ( ∃ 𝑠 ∈ 𝑆 𝑏 = ( 𝐴 +s 𝑠 ) ∧ 𝑏 ≤s ( 𝐴 +s 𝑓 ) ) ) |
164 |
163
|
exbii |
⊢ ( ∃ 𝑏 ∃ 𝑠 ∈ 𝑆 ( 𝑏 = ( 𝐴 +s 𝑠 ) ∧ 𝑏 ≤s ( 𝐴 +s 𝑓 ) ) ↔ ∃ 𝑏 ( ∃ 𝑠 ∈ 𝑆 𝑏 = ( 𝐴 +s 𝑠 ) ∧ 𝑏 ≤s ( 𝐴 +s 𝑓 ) ) ) |
165 |
158 162 164
|
3bitr3ri |
⊢ ( ∃ 𝑏 ( ∃ 𝑠 ∈ 𝑆 𝑏 = ( 𝐴 +s 𝑠 ) ∧ 𝑏 ≤s ( 𝐴 +s 𝑓 ) ) ↔ ∃ 𝑠 ∈ 𝑆 ( 𝐴 +s 𝑠 ) ≤s ( 𝐴 +s 𝑓 ) ) |
166 |
157 165
|
bitri |
⊢ ( ∃ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } 𝑏 ≤s ( 𝐴 +s 𝑓 ) ↔ ∃ 𝑠 ∈ 𝑆 ( 𝐴 +s 𝑠 ) ≤s ( 𝐴 +s 𝑓 ) ) |
167 |
|
ssun2 |
⊢ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ⊆ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) |
168 |
|
ssrexv |
⊢ ( { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ⊆ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) → ( ∃ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } 𝑏 ≤s ( 𝐴 +s 𝑓 ) → ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s ( 𝐴 +s 𝑓 ) ) ) |
169 |
167 168
|
ax-mp |
⊢ ( ∃ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } 𝑏 ≤s ( 𝐴 +s 𝑓 ) → ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s ( 𝐴 +s 𝑓 ) ) |
170 |
166 169
|
sylbir |
⊢ ( ∃ 𝑠 ∈ 𝑆 ( 𝐴 +s 𝑠 ) ≤s ( 𝐴 +s 𝑓 ) → ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s ( 𝐴 +s 𝑓 ) ) |
171 |
170
|
ralimi |
⊢ ( ∀ 𝑓 ∈ ( R ‘ 𝐵 ) ∃ 𝑠 ∈ 𝑆 ( 𝐴 +s 𝑠 ) ≤s ( 𝐴 +s 𝑓 ) → ∀ 𝑓 ∈ ( R ‘ 𝐵 ) ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s ( 𝐴 +s 𝑓 ) ) |
172 |
154 171
|
syl |
⊢ ( 𝜑 → ∀ 𝑓 ∈ ( R ‘ 𝐵 ) ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s ( 𝐴 +s 𝑓 ) ) |
173 |
|
ralunb |
⊢ ( ∀ 𝑎 ∈ ( { 𝑐 ∣ ∃ 𝑒 ∈ ( R ‘ 𝐴 ) 𝑐 = ( 𝑒 +s 𝐵 ) } ∪ { 𝑑 ∣ ∃ 𝑓 ∈ ( R ‘ 𝐵 ) 𝑑 = ( 𝐴 +s 𝑓 ) } ) ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s 𝑎 ↔ ( ∀ 𝑎 ∈ { 𝑐 ∣ ∃ 𝑒 ∈ ( R ‘ 𝐴 ) 𝑐 = ( 𝑒 +s 𝐵 ) } ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s 𝑎 ∧ ∀ 𝑎 ∈ { 𝑑 ∣ ∃ 𝑓 ∈ ( R ‘ 𝐵 ) 𝑑 = ( 𝐴 +s 𝑓 ) } ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s 𝑎 ) ) |
174 |
|
eqeq1 |
⊢ ( 𝑐 = 𝑎 → ( 𝑐 = ( 𝑒 +s 𝐵 ) ↔ 𝑎 = ( 𝑒 +s 𝐵 ) ) ) |
175 |
174
|
rexbidv |
⊢ ( 𝑐 = 𝑎 → ( ∃ 𝑒 ∈ ( R ‘ 𝐴 ) 𝑐 = ( 𝑒 +s 𝐵 ) ↔ ∃ 𝑒 ∈ ( R ‘ 𝐴 ) 𝑎 = ( 𝑒 +s 𝐵 ) ) ) |
176 |
175
|
ralab |
⊢ ( ∀ 𝑎 ∈ { 𝑐 ∣ ∃ 𝑒 ∈ ( R ‘ 𝐴 ) 𝑐 = ( 𝑒 +s 𝐵 ) } ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s 𝑎 ↔ ∀ 𝑎 ( ∃ 𝑒 ∈ ( R ‘ 𝐴 ) 𝑎 = ( 𝑒 +s 𝐵 ) → ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s 𝑎 ) ) |
177 |
|
ralcom4 |
⊢ ( ∀ 𝑒 ∈ ( R ‘ 𝐴 ) ∀ 𝑎 ( 𝑎 = ( 𝑒 +s 𝐵 ) → ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s 𝑎 ) ↔ ∀ 𝑎 ∀ 𝑒 ∈ ( R ‘ 𝐴 ) ( 𝑎 = ( 𝑒 +s 𝐵 ) → ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s 𝑎 ) ) |
178 |
|
ovex |
⊢ ( 𝑒 +s 𝐵 ) ∈ V |
179 |
|
breq2 |
⊢ ( 𝑎 = ( 𝑒 +s 𝐵 ) → ( 𝑏 ≤s 𝑎 ↔ 𝑏 ≤s ( 𝑒 +s 𝐵 ) ) ) |
180 |
179
|
rexbidv |
⊢ ( 𝑎 = ( 𝑒 +s 𝐵 ) → ( ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s 𝑎 ↔ ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s ( 𝑒 +s 𝐵 ) ) ) |
181 |
178 180
|
ceqsalv |
⊢ ( ∀ 𝑎 ( 𝑎 = ( 𝑒 +s 𝐵 ) → ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s 𝑎 ) ↔ ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s ( 𝑒 +s 𝐵 ) ) |
182 |
181
|
ralbii |
⊢ ( ∀ 𝑒 ∈ ( R ‘ 𝐴 ) ∀ 𝑎 ( 𝑎 = ( 𝑒 +s 𝐵 ) → ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s 𝑎 ) ↔ ∀ 𝑒 ∈ ( R ‘ 𝐴 ) ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s ( 𝑒 +s 𝐵 ) ) |
183 |
|
r19.23v |
⊢ ( ∀ 𝑒 ∈ ( R ‘ 𝐴 ) ( 𝑎 = ( 𝑒 +s 𝐵 ) → ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s 𝑎 ) ↔ ( ∃ 𝑒 ∈ ( R ‘ 𝐴 ) 𝑎 = ( 𝑒 +s 𝐵 ) → ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s 𝑎 ) ) |
184 |
183
|
albii |
⊢ ( ∀ 𝑎 ∀ 𝑒 ∈ ( R ‘ 𝐴 ) ( 𝑎 = ( 𝑒 +s 𝐵 ) → ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s 𝑎 ) ↔ ∀ 𝑎 ( ∃ 𝑒 ∈ ( R ‘ 𝐴 ) 𝑎 = ( 𝑒 +s 𝐵 ) → ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s 𝑎 ) ) |
185 |
177 182 184
|
3bitr3ri |
⊢ ( ∀ 𝑎 ( ∃ 𝑒 ∈ ( R ‘ 𝐴 ) 𝑎 = ( 𝑒 +s 𝐵 ) → ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s 𝑎 ) ↔ ∀ 𝑒 ∈ ( R ‘ 𝐴 ) ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s ( 𝑒 +s 𝐵 ) ) |
186 |
176 185
|
bitri |
⊢ ( ∀ 𝑎 ∈ { 𝑐 ∣ ∃ 𝑒 ∈ ( R ‘ 𝐴 ) 𝑐 = ( 𝑒 +s 𝐵 ) } ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s 𝑎 ↔ ∀ 𝑒 ∈ ( R ‘ 𝐴 ) ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s ( 𝑒 +s 𝐵 ) ) |
187 |
|
eqeq1 |
⊢ ( 𝑑 = 𝑎 → ( 𝑑 = ( 𝐴 +s 𝑓 ) ↔ 𝑎 = ( 𝐴 +s 𝑓 ) ) ) |
188 |
187
|
rexbidv |
⊢ ( 𝑑 = 𝑎 → ( ∃ 𝑓 ∈ ( R ‘ 𝐵 ) 𝑑 = ( 𝐴 +s 𝑓 ) ↔ ∃ 𝑓 ∈ ( R ‘ 𝐵 ) 𝑎 = ( 𝐴 +s 𝑓 ) ) ) |
189 |
188
|
ralab |
⊢ ( ∀ 𝑎 ∈ { 𝑑 ∣ ∃ 𝑓 ∈ ( R ‘ 𝐵 ) 𝑑 = ( 𝐴 +s 𝑓 ) } ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s 𝑎 ↔ ∀ 𝑎 ( ∃ 𝑓 ∈ ( R ‘ 𝐵 ) 𝑎 = ( 𝐴 +s 𝑓 ) → ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s 𝑎 ) ) |
190 |
|
ralcom4 |
⊢ ( ∀ 𝑓 ∈ ( R ‘ 𝐵 ) ∀ 𝑎 ( 𝑎 = ( 𝐴 +s 𝑓 ) → ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s 𝑎 ) ↔ ∀ 𝑎 ∀ 𝑓 ∈ ( R ‘ 𝐵 ) ( 𝑎 = ( 𝐴 +s 𝑓 ) → ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s 𝑎 ) ) |
191 |
|
ovex |
⊢ ( 𝐴 +s 𝑓 ) ∈ V |
192 |
|
breq2 |
⊢ ( 𝑎 = ( 𝐴 +s 𝑓 ) → ( 𝑏 ≤s 𝑎 ↔ 𝑏 ≤s ( 𝐴 +s 𝑓 ) ) ) |
193 |
192
|
rexbidv |
⊢ ( 𝑎 = ( 𝐴 +s 𝑓 ) → ( ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s 𝑎 ↔ ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s ( 𝐴 +s 𝑓 ) ) ) |
194 |
191 193
|
ceqsalv |
⊢ ( ∀ 𝑎 ( 𝑎 = ( 𝐴 +s 𝑓 ) → ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s 𝑎 ) ↔ ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s ( 𝐴 +s 𝑓 ) ) |
195 |
194
|
ralbii |
⊢ ( ∀ 𝑓 ∈ ( R ‘ 𝐵 ) ∀ 𝑎 ( 𝑎 = ( 𝐴 +s 𝑓 ) → ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s 𝑎 ) ↔ ∀ 𝑓 ∈ ( R ‘ 𝐵 ) ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s ( 𝐴 +s 𝑓 ) ) |
196 |
|
r19.23v |
⊢ ( ∀ 𝑓 ∈ ( R ‘ 𝐵 ) ( 𝑎 = ( 𝐴 +s 𝑓 ) → ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s 𝑎 ) ↔ ( ∃ 𝑓 ∈ ( R ‘ 𝐵 ) 𝑎 = ( 𝐴 +s 𝑓 ) → ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s 𝑎 ) ) |
197 |
196
|
albii |
⊢ ( ∀ 𝑎 ∀ 𝑓 ∈ ( R ‘ 𝐵 ) ( 𝑎 = ( 𝐴 +s 𝑓 ) → ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s 𝑎 ) ↔ ∀ 𝑎 ( ∃ 𝑓 ∈ ( R ‘ 𝐵 ) 𝑎 = ( 𝐴 +s 𝑓 ) → ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s 𝑎 ) ) |
198 |
190 195 197
|
3bitr3ri |
⊢ ( ∀ 𝑎 ( ∃ 𝑓 ∈ ( R ‘ 𝐵 ) 𝑎 = ( 𝐴 +s 𝑓 ) → ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s 𝑎 ) ↔ ∀ 𝑓 ∈ ( R ‘ 𝐵 ) ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s ( 𝐴 +s 𝑓 ) ) |
199 |
189 198
|
bitri |
⊢ ( ∀ 𝑎 ∈ { 𝑑 ∣ ∃ 𝑓 ∈ ( R ‘ 𝐵 ) 𝑑 = ( 𝐴 +s 𝑓 ) } ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s 𝑎 ↔ ∀ 𝑓 ∈ ( R ‘ 𝐵 ) ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s ( 𝐴 +s 𝑓 ) ) |
200 |
186 199
|
anbi12i |
⊢ ( ( ∀ 𝑎 ∈ { 𝑐 ∣ ∃ 𝑒 ∈ ( R ‘ 𝐴 ) 𝑐 = ( 𝑒 +s 𝐵 ) } ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s 𝑎 ∧ ∀ 𝑎 ∈ { 𝑑 ∣ ∃ 𝑓 ∈ ( R ‘ 𝐵 ) 𝑑 = ( 𝐴 +s 𝑓 ) } ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s 𝑎 ) ↔ ( ∀ 𝑒 ∈ ( R ‘ 𝐴 ) ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s ( 𝑒 +s 𝐵 ) ∧ ∀ 𝑓 ∈ ( R ‘ 𝐵 ) ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s ( 𝐴 +s 𝑓 ) ) ) |
201 |
173 200
|
bitri |
⊢ ( ∀ 𝑎 ∈ ( { 𝑐 ∣ ∃ 𝑒 ∈ ( R ‘ 𝐴 ) 𝑐 = ( 𝑒 +s 𝐵 ) } ∪ { 𝑑 ∣ ∃ 𝑓 ∈ ( R ‘ 𝐵 ) 𝑑 = ( 𝐴 +s 𝑓 ) } ) ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s 𝑎 ↔ ( ∀ 𝑒 ∈ ( R ‘ 𝐴 ) ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s ( 𝑒 +s 𝐵 ) ∧ ∀ 𝑓 ∈ ( R ‘ 𝐵 ) ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s ( 𝐴 +s 𝑓 ) ) ) |
202 |
141 172 201
|
sylanbrc |
⊢ ( 𝜑 → ∀ 𝑎 ∈ ( { 𝑐 ∣ ∃ 𝑒 ∈ ( R ‘ 𝐴 ) 𝑐 = ( 𝑒 +s 𝐵 ) } ∪ { 𝑑 ∣ ∃ 𝑓 ∈ ( R ‘ 𝐵 ) 𝑑 = ( 𝐴 +s 𝑓 ) } ) ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s 𝑎 ) |
203 |
|
eqid |
⊢ ( 𝑙 ∈ 𝐿 ↦ ( 𝑙 +s 𝐵 ) ) = ( 𝑙 ∈ 𝐿 ↦ ( 𝑙 +s 𝐵 ) ) |
204 |
203
|
rnmpt |
⊢ ran ( 𝑙 ∈ 𝐿 ↦ ( 𝑙 +s 𝐵 ) ) = { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } |
205 |
|
ssltex1 |
⊢ ( 𝐿 <<s 𝑅 → 𝐿 ∈ V ) |
206 |
1 205
|
syl |
⊢ ( 𝜑 → 𝐿 ∈ V ) |
207 |
206
|
mptexd |
⊢ ( 𝜑 → ( 𝑙 ∈ 𝐿 ↦ ( 𝑙 +s 𝐵 ) ) ∈ V ) |
208 |
|
rnexg |
⊢ ( ( 𝑙 ∈ 𝐿 ↦ ( 𝑙 +s 𝐵 ) ) ∈ V → ran ( 𝑙 ∈ 𝐿 ↦ ( 𝑙 +s 𝐵 ) ) ∈ V ) |
209 |
207 208
|
syl |
⊢ ( 𝜑 → ran ( 𝑙 ∈ 𝐿 ↦ ( 𝑙 +s 𝐵 ) ) ∈ V ) |
210 |
204 209
|
eqeltrrid |
⊢ ( 𝜑 → { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∈ V ) |
211 |
|
eqid |
⊢ ( 𝑚 ∈ 𝑀 ↦ ( 𝐴 +s 𝑚 ) ) = ( 𝑚 ∈ 𝑀 ↦ ( 𝐴 +s 𝑚 ) ) |
212 |
211
|
rnmpt |
⊢ ran ( 𝑚 ∈ 𝑀 ↦ ( 𝐴 +s 𝑚 ) ) = { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } |
213 |
|
ssltex1 |
⊢ ( 𝑀 <<s 𝑆 → 𝑀 ∈ V ) |
214 |
2 213
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ V ) |
215 |
214
|
mptexd |
⊢ ( 𝜑 → ( 𝑚 ∈ 𝑀 ↦ ( 𝐴 +s 𝑚 ) ) ∈ V ) |
216 |
|
rnexg |
⊢ ( ( 𝑚 ∈ 𝑀 ↦ ( 𝐴 +s 𝑚 ) ) ∈ V → ran ( 𝑚 ∈ 𝑀 ↦ ( 𝐴 +s 𝑚 ) ) ∈ V ) |
217 |
215 216
|
syl |
⊢ ( 𝜑 → ran ( 𝑚 ∈ 𝑀 ↦ ( 𝐴 +s 𝑚 ) ) ∈ V ) |
218 |
212 217
|
eqeltrrid |
⊢ ( 𝜑 → { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ∈ V ) |
219 |
210 218
|
unexd |
⊢ ( 𝜑 → ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) ∈ V ) |
220 |
|
snex |
⊢ { ( 𝐴 +s 𝐵 ) } ∈ V |
221 |
220
|
a1i |
⊢ ( 𝜑 → { ( 𝐴 +s 𝐵 ) } ∈ V ) |
222 |
24
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ 𝐿 ) → 𝑙 ∈ No ) |
223 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ 𝐿 ) → 𝐵 ∈ No ) |
224 |
222 223
|
addscld |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ 𝐿 ) → ( 𝑙 +s 𝐵 ) ∈ No ) |
225 |
|
eleq1 |
⊢ ( 𝑦 = ( 𝑙 +s 𝐵 ) → ( 𝑦 ∈ No ↔ ( 𝑙 +s 𝐵 ) ∈ No ) ) |
226 |
224 225
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ 𝐿 ) → ( 𝑦 = ( 𝑙 +s 𝐵 ) → 𝑦 ∈ No ) ) |
227 |
226
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) → 𝑦 ∈ No ) ) |
228 |
227
|
abssdv |
⊢ ( 𝜑 → { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ⊆ No ) |
229 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑀 ) → 𝐴 ∈ No ) |
230 |
55
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑀 ) → 𝑚 ∈ No ) |
231 |
229 230
|
addscld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑀 ) → ( 𝐴 +s 𝑚 ) ∈ No ) |
232 |
|
eleq1 |
⊢ ( 𝑧 = ( 𝐴 +s 𝑚 ) → ( 𝑧 ∈ No ↔ ( 𝐴 +s 𝑚 ) ∈ No ) ) |
233 |
231 232
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑀 ) → ( 𝑧 = ( 𝐴 +s 𝑚 ) → 𝑧 ∈ No ) ) |
234 |
233
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) → 𝑧 ∈ No ) ) |
235 |
234
|
abssdv |
⊢ ( 𝜑 → { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ⊆ No ) |
236 |
228 235
|
unssd |
⊢ ( 𝜑 → ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) ⊆ No ) |
237 |
6 8
|
addscld |
⊢ ( 𝜑 → ( 𝐴 +s 𝐵 ) ∈ No ) |
238 |
237
|
snssd |
⊢ ( 𝜑 → { ( 𝐴 +s 𝐵 ) } ⊆ No ) |
239 |
|
velsn |
⊢ ( 𝑏 ∈ { ( 𝐴 +s 𝐵 ) } ↔ 𝑏 = ( 𝐴 +s 𝐵 ) ) |
240 |
|
elun |
⊢ ( 𝑎 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) ↔ ( 𝑎 ∈ { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∨ 𝑎 ∈ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) ) |
241 |
|
vex |
⊢ 𝑎 ∈ V |
242 |
|
eqeq1 |
⊢ ( 𝑦 = 𝑎 → ( 𝑦 = ( 𝑙 +s 𝐵 ) ↔ 𝑎 = ( 𝑙 +s 𝐵 ) ) ) |
243 |
242
|
rexbidv |
⊢ ( 𝑦 = 𝑎 → ( ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) ↔ ∃ 𝑙 ∈ 𝐿 𝑎 = ( 𝑙 +s 𝐵 ) ) ) |
244 |
241 243
|
elab |
⊢ ( 𝑎 ∈ { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ↔ ∃ 𝑙 ∈ 𝐿 𝑎 = ( 𝑙 +s 𝐵 ) ) |
245 |
|
eqeq1 |
⊢ ( 𝑧 = 𝑎 → ( 𝑧 = ( 𝐴 +s 𝑚 ) ↔ 𝑎 = ( 𝐴 +s 𝑚 ) ) ) |
246 |
245
|
rexbidv |
⊢ ( 𝑧 = 𝑎 → ( ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) ↔ ∃ 𝑚 ∈ 𝑀 𝑎 = ( 𝐴 +s 𝑚 ) ) ) |
247 |
241 246
|
elab |
⊢ ( 𝑎 ∈ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ↔ ∃ 𝑚 ∈ 𝑀 𝑎 = ( 𝐴 +s 𝑚 ) ) |
248 |
244 247
|
orbi12i |
⊢ ( ( 𝑎 ∈ { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∨ 𝑎 ∈ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) ↔ ( ∃ 𝑙 ∈ 𝐿 𝑎 = ( 𝑙 +s 𝐵 ) ∨ ∃ 𝑚 ∈ 𝑀 𝑎 = ( 𝐴 +s 𝑚 ) ) ) |
249 |
240 248
|
bitri |
⊢ ( 𝑎 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) ↔ ( ∃ 𝑙 ∈ 𝐿 𝑎 = ( 𝑙 +s 𝐵 ) ∨ ∃ 𝑚 ∈ 𝑀 𝑎 = ( 𝐴 +s 𝑚 ) ) ) |
250 |
|
scutcut |
⊢ ( 𝐿 <<s 𝑅 → ( ( 𝐿 |s 𝑅 ) ∈ No ∧ 𝐿 <<s { ( 𝐿 |s 𝑅 ) } ∧ { ( 𝐿 |s 𝑅 ) } <<s 𝑅 ) ) |
251 |
1 250
|
syl |
⊢ ( 𝜑 → ( ( 𝐿 |s 𝑅 ) ∈ No ∧ 𝐿 <<s { ( 𝐿 |s 𝑅 ) } ∧ { ( 𝐿 |s 𝑅 ) } <<s 𝑅 ) ) |
252 |
251
|
simp2d |
⊢ ( 𝜑 → 𝐿 <<s { ( 𝐿 |s 𝑅 ) } ) |
253 |
252
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ 𝐿 ) → 𝐿 <<s { ( 𝐿 |s 𝑅 ) } ) |
254 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ 𝐿 ) → 𝑙 ∈ 𝐿 ) |
255 |
|
ovex |
⊢ ( 𝐿 |s 𝑅 ) ∈ V |
256 |
255
|
snid |
⊢ ( 𝐿 |s 𝑅 ) ∈ { ( 𝐿 |s 𝑅 ) } |
257 |
256
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ 𝐿 ) → ( 𝐿 |s 𝑅 ) ∈ { ( 𝐿 |s 𝑅 ) } ) |
258 |
253 254 257
|
ssltsepcd |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ 𝐿 ) → 𝑙 <s ( 𝐿 |s 𝑅 ) ) |
259 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ 𝐿 ) → 𝐴 = ( 𝐿 |s 𝑅 ) ) |
260 |
258 259
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ 𝐿 ) → 𝑙 <s 𝐴 ) |
261 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ 𝐿 ) → 𝐴 ∈ No ) |
262 |
222 261 223
|
sltadd1d |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ 𝐿 ) → ( 𝑙 <s 𝐴 ↔ ( 𝑙 +s 𝐵 ) <s ( 𝐴 +s 𝐵 ) ) ) |
263 |
260 262
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ 𝐿 ) → ( 𝑙 +s 𝐵 ) <s ( 𝐴 +s 𝐵 ) ) |
264 |
|
breq1 |
⊢ ( 𝑎 = ( 𝑙 +s 𝐵 ) → ( 𝑎 <s ( 𝐴 +s 𝐵 ) ↔ ( 𝑙 +s 𝐵 ) <s ( 𝐴 +s 𝐵 ) ) ) |
265 |
263 264
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ 𝐿 ) → ( 𝑎 = ( 𝑙 +s 𝐵 ) → 𝑎 <s ( 𝐴 +s 𝐵 ) ) ) |
266 |
265
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑙 ∈ 𝐿 𝑎 = ( 𝑙 +s 𝐵 ) → 𝑎 <s ( 𝐴 +s 𝐵 ) ) ) |
267 |
|
scutcut |
⊢ ( 𝑀 <<s 𝑆 → ( ( 𝑀 |s 𝑆 ) ∈ No ∧ 𝑀 <<s { ( 𝑀 |s 𝑆 ) } ∧ { ( 𝑀 |s 𝑆 ) } <<s 𝑆 ) ) |
268 |
2 267
|
syl |
⊢ ( 𝜑 → ( ( 𝑀 |s 𝑆 ) ∈ No ∧ 𝑀 <<s { ( 𝑀 |s 𝑆 ) } ∧ { ( 𝑀 |s 𝑆 ) } <<s 𝑆 ) ) |
269 |
268
|
simp2d |
⊢ ( 𝜑 → 𝑀 <<s { ( 𝑀 |s 𝑆 ) } ) |
270 |
269
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑀 ) → 𝑀 <<s { ( 𝑀 |s 𝑆 ) } ) |
271 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑀 ) → 𝑚 ∈ 𝑀 ) |
272 |
|
ovex |
⊢ ( 𝑀 |s 𝑆 ) ∈ V |
273 |
272
|
snid |
⊢ ( 𝑀 |s 𝑆 ) ∈ { ( 𝑀 |s 𝑆 ) } |
274 |
273
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑀 ) → ( 𝑀 |s 𝑆 ) ∈ { ( 𝑀 |s 𝑆 ) } ) |
275 |
270 271 274
|
ssltsepcd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑀 ) → 𝑚 <s ( 𝑀 |s 𝑆 ) ) |
276 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑀 ) → 𝐵 = ( 𝑀 |s 𝑆 ) ) |
277 |
275 276
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑀 ) → 𝑚 <s 𝐵 ) |
278 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑀 ) → 𝐵 ∈ No ) |
279 |
230 278 229
|
sltadd2d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑀 ) → ( 𝑚 <s 𝐵 ↔ ( 𝐴 +s 𝑚 ) <s ( 𝐴 +s 𝐵 ) ) ) |
280 |
277 279
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑀 ) → ( 𝐴 +s 𝑚 ) <s ( 𝐴 +s 𝐵 ) ) |
281 |
|
breq1 |
⊢ ( 𝑎 = ( 𝐴 +s 𝑚 ) → ( 𝑎 <s ( 𝐴 +s 𝐵 ) ↔ ( 𝐴 +s 𝑚 ) <s ( 𝐴 +s 𝐵 ) ) ) |
282 |
280 281
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑀 ) → ( 𝑎 = ( 𝐴 +s 𝑚 ) → 𝑎 <s ( 𝐴 +s 𝐵 ) ) ) |
283 |
282
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑚 ∈ 𝑀 𝑎 = ( 𝐴 +s 𝑚 ) → 𝑎 <s ( 𝐴 +s 𝐵 ) ) ) |
284 |
266 283
|
jaod |
⊢ ( 𝜑 → ( ( ∃ 𝑙 ∈ 𝐿 𝑎 = ( 𝑙 +s 𝐵 ) ∨ ∃ 𝑚 ∈ 𝑀 𝑎 = ( 𝐴 +s 𝑚 ) ) → 𝑎 <s ( 𝐴 +s 𝐵 ) ) ) |
285 |
249 284
|
biimtrid |
⊢ ( 𝜑 → ( 𝑎 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) → 𝑎 <s ( 𝐴 +s 𝐵 ) ) ) |
286 |
285
|
imp |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) ) → 𝑎 <s ( 𝐴 +s 𝐵 ) ) |
287 |
|
breq2 |
⊢ ( 𝑏 = ( 𝐴 +s 𝐵 ) → ( 𝑎 <s 𝑏 ↔ 𝑎 <s ( 𝐴 +s 𝐵 ) ) ) |
288 |
286 287
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) ) → ( 𝑏 = ( 𝐴 +s 𝐵 ) → 𝑎 <s 𝑏 ) ) |
289 |
239 288
|
biimtrid |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) ) → ( 𝑏 ∈ { ( 𝐴 +s 𝐵 ) } → 𝑎 <s 𝑏 ) ) |
290 |
289
|
3impia |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) ∧ 𝑏 ∈ { ( 𝐴 +s 𝐵 ) } ) → 𝑎 <s 𝑏 ) |
291 |
219 221 236 238 290
|
ssltd |
⊢ ( 𝜑 → ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) <<s { ( 𝐴 +s 𝐵 ) } ) |
292 |
10
|
sneqd |
⊢ ( 𝜑 → { ( 𝐴 +s 𝐵 ) } = { ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) 𝑎 = ( 𝑝 +s 𝐵 ) } ∪ { 𝑏 ∣ ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑏 = ( 𝐴 +s 𝑞 ) } ) |s ( { 𝑐 ∣ ∃ 𝑒 ∈ ( R ‘ 𝐴 ) 𝑐 = ( 𝑒 +s 𝐵 ) } ∪ { 𝑑 ∣ ∃ 𝑓 ∈ ( R ‘ 𝐵 ) 𝑑 = ( 𝐴 +s 𝑓 ) } ) ) } ) |
293 |
291 292
|
breqtrd |
⊢ ( 𝜑 → ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) <<s { ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) 𝑎 = ( 𝑝 +s 𝐵 ) } ∪ { 𝑏 ∣ ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑏 = ( 𝐴 +s 𝑞 ) } ) |s ( { 𝑐 ∣ ∃ 𝑒 ∈ ( R ‘ 𝐴 ) 𝑐 = ( 𝑒 +s 𝐵 ) } ∪ { 𝑑 ∣ ∃ 𝑓 ∈ ( R ‘ 𝐵 ) 𝑑 = ( 𝐴 +s 𝑓 ) } ) ) } ) |
294 |
|
eqid |
⊢ ( 𝑟 ∈ 𝑅 ↦ ( 𝑟 +s 𝐵 ) ) = ( 𝑟 ∈ 𝑅 ↦ ( 𝑟 +s 𝐵 ) ) |
295 |
294
|
rnmpt |
⊢ ran ( 𝑟 ∈ 𝑅 ↦ ( 𝑟 +s 𝐵 ) ) = { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } |
296 |
|
ssltex2 |
⊢ ( 𝐿 <<s 𝑅 → 𝑅 ∈ V ) |
297 |
1 296
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ V ) |
298 |
297
|
mptexd |
⊢ ( 𝜑 → ( 𝑟 ∈ 𝑅 ↦ ( 𝑟 +s 𝐵 ) ) ∈ V ) |
299 |
|
rnexg |
⊢ ( ( 𝑟 ∈ 𝑅 ↦ ( 𝑟 +s 𝐵 ) ) ∈ V → ran ( 𝑟 ∈ 𝑅 ↦ ( 𝑟 +s 𝐵 ) ) ∈ V ) |
300 |
298 299
|
syl |
⊢ ( 𝜑 → ran ( 𝑟 ∈ 𝑅 ↦ ( 𝑟 +s 𝐵 ) ) ∈ V ) |
301 |
295 300
|
eqeltrrid |
⊢ ( 𝜑 → { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∈ V ) |
302 |
|
eqid |
⊢ ( 𝑠 ∈ 𝑆 ↦ ( 𝐴 +s 𝑠 ) ) = ( 𝑠 ∈ 𝑆 ↦ ( 𝐴 +s 𝑠 ) ) |
303 |
302
|
rnmpt |
⊢ ran ( 𝑠 ∈ 𝑆 ↦ ( 𝐴 +s 𝑠 ) ) = { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } |
304 |
|
ssltex2 |
⊢ ( 𝑀 <<s 𝑆 → 𝑆 ∈ V ) |
305 |
2 304
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ V ) |
306 |
305
|
mptexd |
⊢ ( 𝜑 → ( 𝑠 ∈ 𝑆 ↦ ( 𝐴 +s 𝑠 ) ) ∈ V ) |
307 |
|
rnexg |
⊢ ( ( 𝑠 ∈ 𝑆 ↦ ( 𝐴 +s 𝑠 ) ) ∈ V → ran ( 𝑠 ∈ 𝑆 ↦ ( 𝐴 +s 𝑠 ) ) ∈ V ) |
308 |
306 307
|
syl |
⊢ ( 𝜑 → ran ( 𝑠 ∈ 𝑆 ↦ ( 𝐴 +s 𝑠 ) ) ∈ V ) |
309 |
303 308
|
eqeltrrid |
⊢ ( 𝜑 → { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ∈ V ) |
310 |
301 309
|
unexd |
⊢ ( 𝜑 → ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) ∈ V ) |
311 |
113
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑅 ) → 𝑟 ∈ No ) |
312 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑅 ) → 𝐵 ∈ No ) |
313 |
311 312
|
addscld |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑅 ) → ( 𝑟 +s 𝐵 ) ∈ No ) |
314 |
|
eleq1 |
⊢ ( 𝑤 = ( 𝑟 +s 𝐵 ) → ( 𝑤 ∈ No ↔ ( 𝑟 +s 𝐵 ) ∈ No ) ) |
315 |
313 314
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑅 ) → ( 𝑤 = ( 𝑟 +s 𝐵 ) → 𝑤 ∈ No ) ) |
316 |
315
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) → 𝑤 ∈ No ) ) |
317 |
316
|
abssdv |
⊢ ( 𝜑 → { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ⊆ No ) |
318 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → 𝐴 ∈ No ) |
319 |
144
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → 𝑠 ∈ No ) |
320 |
318 319
|
addscld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → ( 𝐴 +s 𝑠 ) ∈ No ) |
321 |
|
eleq1 |
⊢ ( 𝑡 = ( 𝐴 +s 𝑠 ) → ( 𝑡 ∈ No ↔ ( 𝐴 +s 𝑠 ) ∈ No ) ) |
322 |
320 321
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → ( 𝑡 = ( 𝐴 +s 𝑠 ) → 𝑡 ∈ No ) ) |
323 |
322
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) → 𝑡 ∈ No ) ) |
324 |
323
|
abssdv |
⊢ ( 𝜑 → { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ⊆ No ) |
325 |
317 324
|
unssd |
⊢ ( 𝜑 → ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) ⊆ No ) |
326 |
|
velsn |
⊢ ( 𝑎 ∈ { ( 𝐴 +s 𝐵 ) } ↔ 𝑎 = ( 𝐴 +s 𝐵 ) ) |
327 |
|
elun |
⊢ ( 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) ↔ ( 𝑏 ∈ { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∨ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) ) |
328 |
|
vex |
⊢ 𝑏 ∈ V |
329 |
328 125
|
elab |
⊢ ( 𝑏 ∈ { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ↔ ∃ 𝑟 ∈ 𝑅 𝑏 = ( 𝑟 +s 𝐵 ) ) |
330 |
328 156
|
elab |
⊢ ( 𝑏 ∈ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ↔ ∃ 𝑠 ∈ 𝑆 𝑏 = ( 𝐴 +s 𝑠 ) ) |
331 |
329 330
|
orbi12i |
⊢ ( ( 𝑏 ∈ { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∨ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) ↔ ( ∃ 𝑟 ∈ 𝑅 𝑏 = ( 𝑟 +s 𝐵 ) ∨ ∃ 𝑠 ∈ 𝑆 𝑏 = ( 𝐴 +s 𝑠 ) ) ) |
332 |
327 331
|
bitri |
⊢ ( 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) ↔ ( ∃ 𝑟 ∈ 𝑅 𝑏 = ( 𝑟 +s 𝐵 ) ∨ ∃ 𝑠 ∈ 𝑆 𝑏 = ( 𝐴 +s 𝑠 ) ) ) |
333 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑅 ) → 𝐴 = ( 𝐿 |s 𝑅 ) ) |
334 |
251
|
simp3d |
⊢ ( 𝜑 → { ( 𝐿 |s 𝑅 ) } <<s 𝑅 ) |
335 |
334
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑅 ) → { ( 𝐿 |s 𝑅 ) } <<s 𝑅 ) |
336 |
256
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑅 ) → ( 𝐿 |s 𝑅 ) ∈ { ( 𝐿 |s 𝑅 ) } ) |
337 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑅 ) → 𝑟 ∈ 𝑅 ) |
338 |
335 336 337
|
ssltsepcd |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑅 ) → ( 𝐿 |s 𝑅 ) <s 𝑟 ) |
339 |
333 338
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑅 ) → 𝐴 <s 𝑟 ) |
340 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑅 ) → 𝐴 ∈ No ) |
341 |
340 311 312
|
sltadd1d |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑅 ) → ( 𝐴 <s 𝑟 ↔ ( 𝐴 +s 𝐵 ) <s ( 𝑟 +s 𝐵 ) ) ) |
342 |
339 341
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑅 ) → ( 𝐴 +s 𝐵 ) <s ( 𝑟 +s 𝐵 ) ) |
343 |
|
breq2 |
⊢ ( 𝑏 = ( 𝑟 +s 𝐵 ) → ( ( 𝐴 +s 𝐵 ) <s 𝑏 ↔ ( 𝐴 +s 𝐵 ) <s ( 𝑟 +s 𝐵 ) ) ) |
344 |
342 343
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑅 ) → ( 𝑏 = ( 𝑟 +s 𝐵 ) → ( 𝐴 +s 𝐵 ) <s 𝑏 ) ) |
345 |
344
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑟 ∈ 𝑅 𝑏 = ( 𝑟 +s 𝐵 ) → ( 𝐴 +s 𝐵 ) <s 𝑏 ) ) |
346 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → 𝐵 = ( 𝑀 |s 𝑆 ) ) |
347 |
268
|
simp3d |
⊢ ( 𝜑 → { ( 𝑀 |s 𝑆 ) } <<s 𝑆 ) |
348 |
347
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → { ( 𝑀 |s 𝑆 ) } <<s 𝑆 ) |
349 |
273
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → ( 𝑀 |s 𝑆 ) ∈ { ( 𝑀 |s 𝑆 ) } ) |
350 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → 𝑠 ∈ 𝑆 ) |
351 |
348 349 350
|
ssltsepcd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → ( 𝑀 |s 𝑆 ) <s 𝑠 ) |
352 |
346 351
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → 𝐵 <s 𝑠 ) |
353 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → 𝐵 ∈ No ) |
354 |
353 319 318
|
sltadd2d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → ( 𝐵 <s 𝑠 ↔ ( 𝐴 +s 𝐵 ) <s ( 𝐴 +s 𝑠 ) ) ) |
355 |
352 354
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → ( 𝐴 +s 𝐵 ) <s ( 𝐴 +s 𝑠 ) ) |
356 |
|
breq2 |
⊢ ( 𝑏 = ( 𝐴 +s 𝑠 ) → ( ( 𝐴 +s 𝐵 ) <s 𝑏 ↔ ( 𝐴 +s 𝐵 ) <s ( 𝐴 +s 𝑠 ) ) ) |
357 |
355 356
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → ( 𝑏 = ( 𝐴 +s 𝑠 ) → ( 𝐴 +s 𝐵 ) <s 𝑏 ) ) |
358 |
357
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑠 ∈ 𝑆 𝑏 = ( 𝐴 +s 𝑠 ) → ( 𝐴 +s 𝐵 ) <s 𝑏 ) ) |
359 |
345 358
|
jaod |
⊢ ( 𝜑 → ( ( ∃ 𝑟 ∈ 𝑅 𝑏 = ( 𝑟 +s 𝐵 ) ∨ ∃ 𝑠 ∈ 𝑆 𝑏 = ( 𝐴 +s 𝑠 ) ) → ( 𝐴 +s 𝐵 ) <s 𝑏 ) ) |
360 |
332 359
|
biimtrid |
⊢ ( 𝜑 → ( 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) → ( 𝐴 +s 𝐵 ) <s 𝑏 ) ) |
361 |
360
|
imp |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) ) → ( 𝐴 +s 𝐵 ) <s 𝑏 ) |
362 |
|
breq1 |
⊢ ( 𝑎 = ( 𝐴 +s 𝐵 ) → ( 𝑎 <s 𝑏 ↔ ( 𝐴 +s 𝐵 ) <s 𝑏 ) ) |
363 |
361 362
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) ) → ( 𝑎 = ( 𝐴 +s 𝐵 ) → 𝑎 <s 𝑏 ) ) |
364 |
363
|
ex |
⊢ ( 𝜑 → ( 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) → ( 𝑎 = ( 𝐴 +s 𝐵 ) → 𝑎 <s 𝑏 ) ) ) |
365 |
364
|
com23 |
⊢ ( 𝜑 → ( 𝑎 = ( 𝐴 +s 𝐵 ) → ( 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) → 𝑎 <s 𝑏 ) ) ) |
366 |
326 365
|
biimtrid |
⊢ ( 𝜑 → ( 𝑎 ∈ { ( 𝐴 +s 𝐵 ) } → ( 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) → 𝑎 <s 𝑏 ) ) ) |
367 |
366
|
3imp |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ { ( 𝐴 +s 𝐵 ) } ∧ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) ) → 𝑎 <s 𝑏 ) |
368 |
221 310 238 325 367
|
ssltd |
⊢ ( 𝜑 → { ( 𝐴 +s 𝐵 ) } <<s ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) ) |
369 |
292 368
|
eqbrtrrd |
⊢ ( 𝜑 → { ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) 𝑎 = ( 𝑝 +s 𝐵 ) } ∪ { 𝑏 ∣ ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑏 = ( 𝐴 +s 𝑞 ) } ) |s ( { 𝑐 ∣ ∃ 𝑒 ∈ ( R ‘ 𝐴 ) 𝑐 = ( 𝑒 +s 𝐵 ) } ∪ { 𝑑 ∣ ∃ 𝑓 ∈ ( R ‘ 𝐵 ) 𝑑 = ( 𝐴 +s 𝑓 ) } ) ) } <<s ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) ) |
370 |
18 110 202 293 369
|
cofcut1d |
⊢ ( 𝜑 → ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) 𝑎 = ( 𝑝 +s 𝐵 ) } ∪ { 𝑏 ∣ ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑏 = ( 𝐴 +s 𝑞 ) } ) |s ( { 𝑐 ∣ ∃ 𝑒 ∈ ( R ‘ 𝐴 ) 𝑐 = ( 𝑒 +s 𝐵 ) } ∪ { 𝑑 ∣ ∃ 𝑓 ∈ ( R ‘ 𝐵 ) 𝑑 = ( 𝐴 +s 𝑓 ) } ) ) = ( ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) |s ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) ) ) |
371 |
10 370
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 +s 𝐵 ) = ( ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) |s ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) ) ) |