| Step |
Hyp |
Ref |
Expression |
| 1 |
|
addsuniflem.1 |
⊢ ( 𝜑 → 𝐿 <<s 𝑅 ) |
| 2 |
|
addsuniflem.2 |
⊢ ( 𝜑 → 𝑀 <<s 𝑆 ) |
| 3 |
|
addsuniflem.3 |
⊢ ( 𝜑 → 𝐴 = ( 𝐿 |s 𝑅 ) ) |
| 4 |
|
addsuniflem.4 |
⊢ ( 𝜑 → 𝐵 = ( 𝑀 |s 𝑆 ) ) |
| 5 |
1
|
scutcld |
⊢ ( 𝜑 → ( 𝐿 |s 𝑅 ) ∈ No ) |
| 6 |
3 5
|
eqeltrd |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
| 7 |
2
|
scutcld |
⊢ ( 𝜑 → ( 𝑀 |s 𝑆 ) ∈ No ) |
| 8 |
4 7
|
eqeltrd |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
| 9 |
|
addsval2 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 +s 𝐵 ) = ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) 𝑎 = ( 𝑝 +s 𝐵 ) } ∪ { 𝑏 ∣ ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑏 = ( 𝐴 +s 𝑞 ) } ) |s ( { 𝑐 ∣ ∃ 𝑒 ∈ ( R ‘ 𝐴 ) 𝑐 = ( 𝑒 +s 𝐵 ) } ∪ { 𝑑 ∣ ∃ 𝑓 ∈ ( R ‘ 𝐵 ) 𝑑 = ( 𝐴 +s 𝑓 ) } ) ) ) |
| 10 |
6 8 9
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 +s 𝐵 ) = ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) 𝑎 = ( 𝑝 +s 𝐵 ) } ∪ { 𝑏 ∣ ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑏 = ( 𝐴 +s 𝑞 ) } ) |s ( { 𝑐 ∣ ∃ 𝑒 ∈ ( R ‘ 𝐴 ) 𝑐 = ( 𝑒 +s 𝐵 ) } ∪ { 𝑑 ∣ ∃ 𝑓 ∈ ( R ‘ 𝐵 ) 𝑑 = ( 𝐴 +s 𝑓 ) } ) ) ) |
| 11 |
6 8
|
addscut |
⊢ ( 𝜑 → ( ( 𝐴 +s 𝐵 ) ∈ No ∧ ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) 𝑎 = ( 𝑝 +s 𝐵 ) } ∪ { 𝑏 ∣ ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑏 = ( 𝐴 +s 𝑞 ) } ) <<s { ( 𝐴 +s 𝐵 ) } ∧ { ( 𝐴 +s 𝐵 ) } <<s ( { 𝑐 ∣ ∃ 𝑒 ∈ ( R ‘ 𝐴 ) 𝑐 = ( 𝑒 +s 𝐵 ) } ∪ { 𝑑 ∣ ∃ 𝑓 ∈ ( R ‘ 𝐵 ) 𝑑 = ( 𝐴 +s 𝑓 ) } ) ) ) |
| 12 |
11
|
simp2d |
⊢ ( 𝜑 → ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) 𝑎 = ( 𝑝 +s 𝐵 ) } ∪ { 𝑏 ∣ ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑏 = ( 𝐴 +s 𝑞 ) } ) <<s { ( 𝐴 +s 𝐵 ) } ) |
| 13 |
11
|
simp3d |
⊢ ( 𝜑 → { ( 𝐴 +s 𝐵 ) } <<s ( { 𝑐 ∣ ∃ 𝑒 ∈ ( R ‘ 𝐴 ) 𝑐 = ( 𝑒 +s 𝐵 ) } ∪ { 𝑑 ∣ ∃ 𝑓 ∈ ( R ‘ 𝐵 ) 𝑑 = ( 𝐴 +s 𝑓 ) } ) ) |
| 14 |
|
ovex |
⊢ ( 𝐴 +s 𝐵 ) ∈ V |
| 15 |
14
|
snnz |
⊢ { ( 𝐴 +s 𝐵 ) } ≠ ∅ |
| 16 |
|
sslttr |
⊢ ( ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) 𝑎 = ( 𝑝 +s 𝐵 ) } ∪ { 𝑏 ∣ ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑏 = ( 𝐴 +s 𝑞 ) } ) <<s { ( 𝐴 +s 𝐵 ) } ∧ { ( 𝐴 +s 𝐵 ) } <<s ( { 𝑐 ∣ ∃ 𝑒 ∈ ( R ‘ 𝐴 ) 𝑐 = ( 𝑒 +s 𝐵 ) } ∪ { 𝑑 ∣ ∃ 𝑓 ∈ ( R ‘ 𝐵 ) 𝑑 = ( 𝐴 +s 𝑓 ) } ) ∧ { ( 𝐴 +s 𝐵 ) } ≠ ∅ ) → ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) 𝑎 = ( 𝑝 +s 𝐵 ) } ∪ { 𝑏 ∣ ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑏 = ( 𝐴 +s 𝑞 ) } ) <<s ( { 𝑐 ∣ ∃ 𝑒 ∈ ( R ‘ 𝐴 ) 𝑐 = ( 𝑒 +s 𝐵 ) } ∪ { 𝑑 ∣ ∃ 𝑓 ∈ ( R ‘ 𝐵 ) 𝑑 = ( 𝐴 +s 𝑓 ) } ) ) |
| 17 |
15 16
|
mp3an3 |
⊢ ( ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) 𝑎 = ( 𝑝 +s 𝐵 ) } ∪ { 𝑏 ∣ ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑏 = ( 𝐴 +s 𝑞 ) } ) <<s { ( 𝐴 +s 𝐵 ) } ∧ { ( 𝐴 +s 𝐵 ) } <<s ( { 𝑐 ∣ ∃ 𝑒 ∈ ( R ‘ 𝐴 ) 𝑐 = ( 𝑒 +s 𝐵 ) } ∪ { 𝑑 ∣ ∃ 𝑓 ∈ ( R ‘ 𝐵 ) 𝑑 = ( 𝐴 +s 𝑓 ) } ) ) → ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) 𝑎 = ( 𝑝 +s 𝐵 ) } ∪ { 𝑏 ∣ ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑏 = ( 𝐴 +s 𝑞 ) } ) <<s ( { 𝑐 ∣ ∃ 𝑒 ∈ ( R ‘ 𝐴 ) 𝑐 = ( 𝑒 +s 𝐵 ) } ∪ { 𝑑 ∣ ∃ 𝑓 ∈ ( R ‘ 𝐵 ) 𝑑 = ( 𝐴 +s 𝑓 ) } ) ) |
| 18 |
12 13 17
|
syl2anc |
⊢ ( 𝜑 → ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) 𝑎 = ( 𝑝 +s 𝐵 ) } ∪ { 𝑏 ∣ ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑏 = ( 𝐴 +s 𝑞 ) } ) <<s ( { 𝑐 ∣ ∃ 𝑒 ∈ ( R ‘ 𝐴 ) 𝑐 = ( 𝑒 +s 𝐵 ) } ∪ { 𝑑 ∣ ∃ 𝑓 ∈ ( R ‘ 𝐵 ) 𝑑 = ( 𝐴 +s 𝑓 ) } ) ) |
| 19 |
1 3
|
cofcutr1d |
⊢ ( 𝜑 → ∀ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑙 ∈ 𝐿 𝑝 ≤s 𝑙 ) |
| 20 |
|
leftssno |
⊢ ( L ‘ 𝐴 ) ⊆ No |
| 21 |
20
|
sseli |
⊢ ( 𝑝 ∈ ( L ‘ 𝐴 ) → 𝑝 ∈ No ) |
| 22 |
21
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( L ‘ 𝐴 ) ) ∧ 𝑙 ∈ 𝐿 ) → 𝑝 ∈ No ) |
| 23 |
|
ssltss1 |
⊢ ( 𝐿 <<s 𝑅 → 𝐿 ⊆ No ) |
| 24 |
1 23
|
syl |
⊢ ( 𝜑 → 𝐿 ⊆ No ) |
| 25 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( L ‘ 𝐴 ) ) → 𝐿 ⊆ No ) |
| 26 |
25
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( L ‘ 𝐴 ) ) ∧ 𝑙 ∈ 𝐿 ) → 𝑙 ∈ No ) |
| 27 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( L ‘ 𝐴 ) ) ∧ 𝑙 ∈ 𝐿 ) → 𝐵 ∈ No ) |
| 28 |
22 26 27
|
sleadd1d |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( L ‘ 𝐴 ) ) ∧ 𝑙 ∈ 𝐿 ) → ( 𝑝 ≤s 𝑙 ↔ ( 𝑝 +s 𝐵 ) ≤s ( 𝑙 +s 𝐵 ) ) ) |
| 29 |
28
|
rexbidva |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( L ‘ 𝐴 ) ) → ( ∃ 𝑙 ∈ 𝐿 𝑝 ≤s 𝑙 ↔ ∃ 𝑙 ∈ 𝐿 ( 𝑝 +s 𝐵 ) ≤s ( 𝑙 +s 𝐵 ) ) ) |
| 30 |
29
|
ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑙 ∈ 𝐿 𝑝 ≤s 𝑙 ↔ ∀ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑙 ∈ 𝐿 ( 𝑝 +s 𝐵 ) ≤s ( 𝑙 +s 𝐵 ) ) ) |
| 31 |
19 30
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑙 ∈ 𝐿 ( 𝑝 +s 𝐵 ) ≤s ( 𝑙 +s 𝐵 ) ) |
| 32 |
|
eqeq1 |
⊢ ( 𝑦 = 𝑠 → ( 𝑦 = ( 𝑙 +s 𝐵 ) ↔ 𝑠 = ( 𝑙 +s 𝐵 ) ) ) |
| 33 |
32
|
rexbidv |
⊢ ( 𝑦 = 𝑠 → ( ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) ↔ ∃ 𝑙 ∈ 𝐿 𝑠 = ( 𝑙 +s 𝐵 ) ) ) |
| 34 |
33
|
rexab |
⊢ ( ∃ 𝑠 ∈ { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ( 𝑝 +s 𝐵 ) ≤s 𝑠 ↔ ∃ 𝑠 ( ∃ 𝑙 ∈ 𝐿 𝑠 = ( 𝑙 +s 𝐵 ) ∧ ( 𝑝 +s 𝐵 ) ≤s 𝑠 ) ) |
| 35 |
|
rexcom4 |
⊢ ( ∃ 𝑙 ∈ 𝐿 ∃ 𝑠 ( 𝑠 = ( 𝑙 +s 𝐵 ) ∧ ( 𝑝 +s 𝐵 ) ≤s 𝑠 ) ↔ ∃ 𝑠 ∃ 𝑙 ∈ 𝐿 ( 𝑠 = ( 𝑙 +s 𝐵 ) ∧ ( 𝑝 +s 𝐵 ) ≤s 𝑠 ) ) |
| 36 |
|
ovex |
⊢ ( 𝑙 +s 𝐵 ) ∈ V |
| 37 |
|
breq2 |
⊢ ( 𝑠 = ( 𝑙 +s 𝐵 ) → ( ( 𝑝 +s 𝐵 ) ≤s 𝑠 ↔ ( 𝑝 +s 𝐵 ) ≤s ( 𝑙 +s 𝐵 ) ) ) |
| 38 |
36 37
|
ceqsexv |
⊢ ( ∃ 𝑠 ( 𝑠 = ( 𝑙 +s 𝐵 ) ∧ ( 𝑝 +s 𝐵 ) ≤s 𝑠 ) ↔ ( 𝑝 +s 𝐵 ) ≤s ( 𝑙 +s 𝐵 ) ) |
| 39 |
38
|
rexbii |
⊢ ( ∃ 𝑙 ∈ 𝐿 ∃ 𝑠 ( 𝑠 = ( 𝑙 +s 𝐵 ) ∧ ( 𝑝 +s 𝐵 ) ≤s 𝑠 ) ↔ ∃ 𝑙 ∈ 𝐿 ( 𝑝 +s 𝐵 ) ≤s ( 𝑙 +s 𝐵 ) ) |
| 40 |
|
r19.41v |
⊢ ( ∃ 𝑙 ∈ 𝐿 ( 𝑠 = ( 𝑙 +s 𝐵 ) ∧ ( 𝑝 +s 𝐵 ) ≤s 𝑠 ) ↔ ( ∃ 𝑙 ∈ 𝐿 𝑠 = ( 𝑙 +s 𝐵 ) ∧ ( 𝑝 +s 𝐵 ) ≤s 𝑠 ) ) |
| 41 |
40
|
exbii |
⊢ ( ∃ 𝑠 ∃ 𝑙 ∈ 𝐿 ( 𝑠 = ( 𝑙 +s 𝐵 ) ∧ ( 𝑝 +s 𝐵 ) ≤s 𝑠 ) ↔ ∃ 𝑠 ( ∃ 𝑙 ∈ 𝐿 𝑠 = ( 𝑙 +s 𝐵 ) ∧ ( 𝑝 +s 𝐵 ) ≤s 𝑠 ) ) |
| 42 |
35 39 41
|
3bitr3ri |
⊢ ( ∃ 𝑠 ( ∃ 𝑙 ∈ 𝐿 𝑠 = ( 𝑙 +s 𝐵 ) ∧ ( 𝑝 +s 𝐵 ) ≤s 𝑠 ) ↔ ∃ 𝑙 ∈ 𝐿 ( 𝑝 +s 𝐵 ) ≤s ( 𝑙 +s 𝐵 ) ) |
| 43 |
34 42
|
bitri |
⊢ ( ∃ 𝑠 ∈ { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ( 𝑝 +s 𝐵 ) ≤s 𝑠 ↔ ∃ 𝑙 ∈ 𝐿 ( 𝑝 +s 𝐵 ) ≤s ( 𝑙 +s 𝐵 ) ) |
| 44 |
|
ssun1 |
⊢ { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ⊆ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) |
| 45 |
|
ssrexv |
⊢ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ⊆ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) → ( ∃ 𝑠 ∈ { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ( 𝑝 +s 𝐵 ) ≤s 𝑠 → ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) ( 𝑝 +s 𝐵 ) ≤s 𝑠 ) ) |
| 46 |
44 45
|
ax-mp |
⊢ ( ∃ 𝑠 ∈ { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ( 𝑝 +s 𝐵 ) ≤s 𝑠 → ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) ( 𝑝 +s 𝐵 ) ≤s 𝑠 ) |
| 47 |
43 46
|
sylbir |
⊢ ( ∃ 𝑙 ∈ 𝐿 ( 𝑝 +s 𝐵 ) ≤s ( 𝑙 +s 𝐵 ) → ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) ( 𝑝 +s 𝐵 ) ≤s 𝑠 ) |
| 48 |
47
|
ralimi |
⊢ ( ∀ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑙 ∈ 𝐿 ( 𝑝 +s 𝐵 ) ≤s ( 𝑙 +s 𝐵 ) → ∀ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) ( 𝑝 +s 𝐵 ) ≤s 𝑠 ) |
| 49 |
31 48
|
syl |
⊢ ( 𝜑 → ∀ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) ( 𝑝 +s 𝐵 ) ≤s 𝑠 ) |
| 50 |
2 4
|
cofcutr1d |
⊢ ( 𝜑 → ∀ 𝑞 ∈ ( L ‘ 𝐵 ) ∃ 𝑚 ∈ 𝑀 𝑞 ≤s 𝑚 ) |
| 51 |
|
leftssno |
⊢ ( L ‘ 𝐵 ) ⊆ No |
| 52 |
51
|
sseli |
⊢ ( 𝑞 ∈ ( L ‘ 𝐵 ) → 𝑞 ∈ No ) |
| 53 |
52
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ∧ 𝑚 ∈ 𝑀 ) → 𝑞 ∈ No ) |
| 54 |
|
ssltss1 |
⊢ ( 𝑀 <<s 𝑆 → 𝑀 ⊆ No ) |
| 55 |
2 54
|
syl |
⊢ ( 𝜑 → 𝑀 ⊆ No ) |
| 56 |
55
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) → 𝑀 ⊆ No ) |
| 57 |
56
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ∧ 𝑚 ∈ 𝑀 ) → 𝑚 ∈ No ) |
| 58 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ∧ 𝑚 ∈ 𝑀 ) → 𝐴 ∈ No ) |
| 59 |
53 57 58
|
sleadd2d |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) ∧ 𝑚 ∈ 𝑀 ) → ( 𝑞 ≤s 𝑚 ↔ ( 𝐴 +s 𝑞 ) ≤s ( 𝐴 +s 𝑚 ) ) ) |
| 60 |
59
|
rexbidva |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ ( L ‘ 𝐵 ) ) → ( ∃ 𝑚 ∈ 𝑀 𝑞 ≤s 𝑚 ↔ ∃ 𝑚 ∈ 𝑀 ( 𝐴 +s 𝑞 ) ≤s ( 𝐴 +s 𝑚 ) ) ) |
| 61 |
60
|
ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑞 ∈ ( L ‘ 𝐵 ) ∃ 𝑚 ∈ 𝑀 𝑞 ≤s 𝑚 ↔ ∀ 𝑞 ∈ ( L ‘ 𝐵 ) ∃ 𝑚 ∈ 𝑀 ( 𝐴 +s 𝑞 ) ≤s ( 𝐴 +s 𝑚 ) ) ) |
| 62 |
50 61
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑞 ∈ ( L ‘ 𝐵 ) ∃ 𝑚 ∈ 𝑀 ( 𝐴 +s 𝑞 ) ≤s ( 𝐴 +s 𝑚 ) ) |
| 63 |
|
eqeq1 |
⊢ ( 𝑧 = 𝑠 → ( 𝑧 = ( 𝐴 +s 𝑚 ) ↔ 𝑠 = ( 𝐴 +s 𝑚 ) ) ) |
| 64 |
63
|
rexbidv |
⊢ ( 𝑧 = 𝑠 → ( ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) ↔ ∃ 𝑚 ∈ 𝑀 𝑠 = ( 𝐴 +s 𝑚 ) ) ) |
| 65 |
64
|
rexab |
⊢ ( ∃ 𝑠 ∈ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ( 𝐴 +s 𝑞 ) ≤s 𝑠 ↔ ∃ 𝑠 ( ∃ 𝑚 ∈ 𝑀 𝑠 = ( 𝐴 +s 𝑚 ) ∧ ( 𝐴 +s 𝑞 ) ≤s 𝑠 ) ) |
| 66 |
|
rexcom4 |
⊢ ( ∃ 𝑚 ∈ 𝑀 ∃ 𝑠 ( 𝑠 = ( 𝐴 +s 𝑚 ) ∧ ( 𝐴 +s 𝑞 ) ≤s 𝑠 ) ↔ ∃ 𝑠 ∃ 𝑚 ∈ 𝑀 ( 𝑠 = ( 𝐴 +s 𝑚 ) ∧ ( 𝐴 +s 𝑞 ) ≤s 𝑠 ) ) |
| 67 |
|
ovex |
⊢ ( 𝐴 +s 𝑚 ) ∈ V |
| 68 |
|
breq2 |
⊢ ( 𝑠 = ( 𝐴 +s 𝑚 ) → ( ( 𝐴 +s 𝑞 ) ≤s 𝑠 ↔ ( 𝐴 +s 𝑞 ) ≤s ( 𝐴 +s 𝑚 ) ) ) |
| 69 |
67 68
|
ceqsexv |
⊢ ( ∃ 𝑠 ( 𝑠 = ( 𝐴 +s 𝑚 ) ∧ ( 𝐴 +s 𝑞 ) ≤s 𝑠 ) ↔ ( 𝐴 +s 𝑞 ) ≤s ( 𝐴 +s 𝑚 ) ) |
| 70 |
69
|
rexbii |
⊢ ( ∃ 𝑚 ∈ 𝑀 ∃ 𝑠 ( 𝑠 = ( 𝐴 +s 𝑚 ) ∧ ( 𝐴 +s 𝑞 ) ≤s 𝑠 ) ↔ ∃ 𝑚 ∈ 𝑀 ( 𝐴 +s 𝑞 ) ≤s ( 𝐴 +s 𝑚 ) ) |
| 71 |
|
r19.41v |
⊢ ( ∃ 𝑚 ∈ 𝑀 ( 𝑠 = ( 𝐴 +s 𝑚 ) ∧ ( 𝐴 +s 𝑞 ) ≤s 𝑠 ) ↔ ( ∃ 𝑚 ∈ 𝑀 𝑠 = ( 𝐴 +s 𝑚 ) ∧ ( 𝐴 +s 𝑞 ) ≤s 𝑠 ) ) |
| 72 |
71
|
exbii |
⊢ ( ∃ 𝑠 ∃ 𝑚 ∈ 𝑀 ( 𝑠 = ( 𝐴 +s 𝑚 ) ∧ ( 𝐴 +s 𝑞 ) ≤s 𝑠 ) ↔ ∃ 𝑠 ( ∃ 𝑚 ∈ 𝑀 𝑠 = ( 𝐴 +s 𝑚 ) ∧ ( 𝐴 +s 𝑞 ) ≤s 𝑠 ) ) |
| 73 |
66 70 72
|
3bitr3ri |
⊢ ( ∃ 𝑠 ( ∃ 𝑚 ∈ 𝑀 𝑠 = ( 𝐴 +s 𝑚 ) ∧ ( 𝐴 +s 𝑞 ) ≤s 𝑠 ) ↔ ∃ 𝑚 ∈ 𝑀 ( 𝐴 +s 𝑞 ) ≤s ( 𝐴 +s 𝑚 ) ) |
| 74 |
65 73
|
bitri |
⊢ ( ∃ 𝑠 ∈ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ( 𝐴 +s 𝑞 ) ≤s 𝑠 ↔ ∃ 𝑚 ∈ 𝑀 ( 𝐴 +s 𝑞 ) ≤s ( 𝐴 +s 𝑚 ) ) |
| 75 |
|
ssun2 |
⊢ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ⊆ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) |
| 76 |
|
ssrexv |
⊢ ( { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ⊆ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) → ( ∃ 𝑠 ∈ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ( 𝐴 +s 𝑞 ) ≤s 𝑠 → ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) ( 𝐴 +s 𝑞 ) ≤s 𝑠 ) ) |
| 77 |
75 76
|
ax-mp |
⊢ ( ∃ 𝑠 ∈ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ( 𝐴 +s 𝑞 ) ≤s 𝑠 → ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) ( 𝐴 +s 𝑞 ) ≤s 𝑠 ) |
| 78 |
74 77
|
sylbir |
⊢ ( ∃ 𝑚 ∈ 𝑀 ( 𝐴 +s 𝑞 ) ≤s ( 𝐴 +s 𝑚 ) → ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) ( 𝐴 +s 𝑞 ) ≤s 𝑠 ) |
| 79 |
78
|
ralimi |
⊢ ( ∀ 𝑞 ∈ ( L ‘ 𝐵 ) ∃ 𝑚 ∈ 𝑀 ( 𝐴 +s 𝑞 ) ≤s ( 𝐴 +s 𝑚 ) → ∀ 𝑞 ∈ ( L ‘ 𝐵 ) ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) ( 𝐴 +s 𝑞 ) ≤s 𝑠 ) |
| 80 |
62 79
|
syl |
⊢ ( 𝜑 → ∀ 𝑞 ∈ ( L ‘ 𝐵 ) ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) ( 𝐴 +s 𝑞 ) ≤s 𝑠 ) |
| 81 |
|
ralunb |
⊢ ( ∀ 𝑟 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) 𝑎 = ( 𝑝 +s 𝐵 ) } ∪ { 𝑏 ∣ ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑏 = ( 𝐴 +s 𝑞 ) } ) ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) 𝑟 ≤s 𝑠 ↔ ( ∀ 𝑟 ∈ { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) 𝑎 = ( 𝑝 +s 𝐵 ) } ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) 𝑟 ≤s 𝑠 ∧ ∀ 𝑟 ∈ { 𝑏 ∣ ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑏 = ( 𝐴 +s 𝑞 ) } ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) 𝑟 ≤s 𝑠 ) ) |
| 82 |
|
eqeq1 |
⊢ ( 𝑎 = 𝑟 → ( 𝑎 = ( 𝑝 +s 𝐵 ) ↔ 𝑟 = ( 𝑝 +s 𝐵 ) ) ) |
| 83 |
82
|
rexbidv |
⊢ ( 𝑎 = 𝑟 → ( ∃ 𝑝 ∈ ( L ‘ 𝐴 ) 𝑎 = ( 𝑝 +s 𝐵 ) ↔ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) 𝑟 = ( 𝑝 +s 𝐵 ) ) ) |
| 84 |
83
|
ralab |
⊢ ( ∀ 𝑟 ∈ { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) 𝑎 = ( 𝑝 +s 𝐵 ) } ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) 𝑟 ≤s 𝑠 ↔ ∀ 𝑟 ( ∃ 𝑝 ∈ ( L ‘ 𝐴 ) 𝑟 = ( 𝑝 +s 𝐵 ) → ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) 𝑟 ≤s 𝑠 ) ) |
| 85 |
|
ralcom4 |
⊢ ( ∀ 𝑝 ∈ ( L ‘ 𝐴 ) ∀ 𝑟 ( 𝑟 = ( 𝑝 +s 𝐵 ) → ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) 𝑟 ≤s 𝑠 ) ↔ ∀ 𝑟 ∀ 𝑝 ∈ ( L ‘ 𝐴 ) ( 𝑟 = ( 𝑝 +s 𝐵 ) → ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) 𝑟 ≤s 𝑠 ) ) |
| 86 |
|
ovex |
⊢ ( 𝑝 +s 𝐵 ) ∈ V |
| 87 |
|
breq1 |
⊢ ( 𝑟 = ( 𝑝 +s 𝐵 ) → ( 𝑟 ≤s 𝑠 ↔ ( 𝑝 +s 𝐵 ) ≤s 𝑠 ) ) |
| 88 |
87
|
rexbidv |
⊢ ( 𝑟 = ( 𝑝 +s 𝐵 ) → ( ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) 𝑟 ≤s 𝑠 ↔ ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) ( 𝑝 +s 𝐵 ) ≤s 𝑠 ) ) |
| 89 |
86 88
|
ceqsalv |
⊢ ( ∀ 𝑟 ( 𝑟 = ( 𝑝 +s 𝐵 ) → ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) 𝑟 ≤s 𝑠 ) ↔ ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) ( 𝑝 +s 𝐵 ) ≤s 𝑠 ) |
| 90 |
89
|
ralbii |
⊢ ( ∀ 𝑝 ∈ ( L ‘ 𝐴 ) ∀ 𝑟 ( 𝑟 = ( 𝑝 +s 𝐵 ) → ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) 𝑟 ≤s 𝑠 ) ↔ ∀ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) ( 𝑝 +s 𝐵 ) ≤s 𝑠 ) |
| 91 |
|
r19.23v |
⊢ ( ∀ 𝑝 ∈ ( L ‘ 𝐴 ) ( 𝑟 = ( 𝑝 +s 𝐵 ) → ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) 𝑟 ≤s 𝑠 ) ↔ ( ∃ 𝑝 ∈ ( L ‘ 𝐴 ) 𝑟 = ( 𝑝 +s 𝐵 ) → ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) 𝑟 ≤s 𝑠 ) ) |
| 92 |
91
|
albii |
⊢ ( ∀ 𝑟 ∀ 𝑝 ∈ ( L ‘ 𝐴 ) ( 𝑟 = ( 𝑝 +s 𝐵 ) → ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) 𝑟 ≤s 𝑠 ) ↔ ∀ 𝑟 ( ∃ 𝑝 ∈ ( L ‘ 𝐴 ) 𝑟 = ( 𝑝 +s 𝐵 ) → ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) 𝑟 ≤s 𝑠 ) ) |
| 93 |
85 90 92
|
3bitr3ri |
⊢ ( ∀ 𝑟 ( ∃ 𝑝 ∈ ( L ‘ 𝐴 ) 𝑟 = ( 𝑝 +s 𝐵 ) → ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) 𝑟 ≤s 𝑠 ) ↔ ∀ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) ( 𝑝 +s 𝐵 ) ≤s 𝑠 ) |
| 94 |
84 93
|
bitri |
⊢ ( ∀ 𝑟 ∈ { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) 𝑎 = ( 𝑝 +s 𝐵 ) } ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) 𝑟 ≤s 𝑠 ↔ ∀ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) ( 𝑝 +s 𝐵 ) ≤s 𝑠 ) |
| 95 |
|
eqeq1 |
⊢ ( 𝑏 = 𝑟 → ( 𝑏 = ( 𝐴 +s 𝑞 ) ↔ 𝑟 = ( 𝐴 +s 𝑞 ) ) ) |
| 96 |
95
|
rexbidv |
⊢ ( 𝑏 = 𝑟 → ( ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑏 = ( 𝐴 +s 𝑞 ) ↔ ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑟 = ( 𝐴 +s 𝑞 ) ) ) |
| 97 |
96
|
ralab |
⊢ ( ∀ 𝑟 ∈ { 𝑏 ∣ ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑏 = ( 𝐴 +s 𝑞 ) } ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) 𝑟 ≤s 𝑠 ↔ ∀ 𝑟 ( ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑟 = ( 𝐴 +s 𝑞 ) → ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) 𝑟 ≤s 𝑠 ) ) |
| 98 |
|
ralcom4 |
⊢ ( ∀ 𝑞 ∈ ( L ‘ 𝐵 ) ∀ 𝑟 ( 𝑟 = ( 𝐴 +s 𝑞 ) → ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) 𝑟 ≤s 𝑠 ) ↔ ∀ 𝑟 ∀ 𝑞 ∈ ( L ‘ 𝐵 ) ( 𝑟 = ( 𝐴 +s 𝑞 ) → ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) 𝑟 ≤s 𝑠 ) ) |
| 99 |
|
ovex |
⊢ ( 𝐴 +s 𝑞 ) ∈ V |
| 100 |
|
breq1 |
⊢ ( 𝑟 = ( 𝐴 +s 𝑞 ) → ( 𝑟 ≤s 𝑠 ↔ ( 𝐴 +s 𝑞 ) ≤s 𝑠 ) ) |
| 101 |
100
|
rexbidv |
⊢ ( 𝑟 = ( 𝐴 +s 𝑞 ) → ( ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) 𝑟 ≤s 𝑠 ↔ ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) ( 𝐴 +s 𝑞 ) ≤s 𝑠 ) ) |
| 102 |
99 101
|
ceqsalv |
⊢ ( ∀ 𝑟 ( 𝑟 = ( 𝐴 +s 𝑞 ) → ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) 𝑟 ≤s 𝑠 ) ↔ ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) ( 𝐴 +s 𝑞 ) ≤s 𝑠 ) |
| 103 |
102
|
ralbii |
⊢ ( ∀ 𝑞 ∈ ( L ‘ 𝐵 ) ∀ 𝑟 ( 𝑟 = ( 𝐴 +s 𝑞 ) → ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) 𝑟 ≤s 𝑠 ) ↔ ∀ 𝑞 ∈ ( L ‘ 𝐵 ) ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) ( 𝐴 +s 𝑞 ) ≤s 𝑠 ) |
| 104 |
|
r19.23v |
⊢ ( ∀ 𝑞 ∈ ( L ‘ 𝐵 ) ( 𝑟 = ( 𝐴 +s 𝑞 ) → ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) 𝑟 ≤s 𝑠 ) ↔ ( ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑟 = ( 𝐴 +s 𝑞 ) → ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) 𝑟 ≤s 𝑠 ) ) |
| 105 |
104
|
albii |
⊢ ( ∀ 𝑟 ∀ 𝑞 ∈ ( L ‘ 𝐵 ) ( 𝑟 = ( 𝐴 +s 𝑞 ) → ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) 𝑟 ≤s 𝑠 ) ↔ ∀ 𝑟 ( ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑟 = ( 𝐴 +s 𝑞 ) → ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) 𝑟 ≤s 𝑠 ) ) |
| 106 |
98 103 105
|
3bitr3ri |
⊢ ( ∀ 𝑟 ( ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑟 = ( 𝐴 +s 𝑞 ) → ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) 𝑟 ≤s 𝑠 ) ↔ ∀ 𝑞 ∈ ( L ‘ 𝐵 ) ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) ( 𝐴 +s 𝑞 ) ≤s 𝑠 ) |
| 107 |
97 106
|
bitri |
⊢ ( ∀ 𝑟 ∈ { 𝑏 ∣ ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑏 = ( 𝐴 +s 𝑞 ) } ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) 𝑟 ≤s 𝑠 ↔ ∀ 𝑞 ∈ ( L ‘ 𝐵 ) ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) ( 𝐴 +s 𝑞 ) ≤s 𝑠 ) |
| 108 |
94 107
|
anbi12i |
⊢ ( ( ∀ 𝑟 ∈ { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) 𝑎 = ( 𝑝 +s 𝐵 ) } ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) 𝑟 ≤s 𝑠 ∧ ∀ 𝑟 ∈ { 𝑏 ∣ ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑏 = ( 𝐴 +s 𝑞 ) } ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) 𝑟 ≤s 𝑠 ) ↔ ( ∀ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) ( 𝑝 +s 𝐵 ) ≤s 𝑠 ∧ ∀ 𝑞 ∈ ( L ‘ 𝐵 ) ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) ( 𝐴 +s 𝑞 ) ≤s 𝑠 ) ) |
| 109 |
81 108
|
bitri |
⊢ ( ∀ 𝑟 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) 𝑎 = ( 𝑝 +s 𝐵 ) } ∪ { 𝑏 ∣ ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑏 = ( 𝐴 +s 𝑞 ) } ) ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) 𝑟 ≤s 𝑠 ↔ ( ∀ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) ( 𝑝 +s 𝐵 ) ≤s 𝑠 ∧ ∀ 𝑞 ∈ ( L ‘ 𝐵 ) ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) ( 𝐴 +s 𝑞 ) ≤s 𝑠 ) ) |
| 110 |
49 80 109
|
sylanbrc |
⊢ ( 𝜑 → ∀ 𝑟 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) 𝑎 = ( 𝑝 +s 𝐵 ) } ∪ { 𝑏 ∣ ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑏 = ( 𝐴 +s 𝑞 ) } ) ∃ 𝑠 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) 𝑟 ≤s 𝑠 ) |
| 111 |
1 3
|
cofcutr2d |
⊢ ( 𝜑 → ∀ 𝑒 ∈ ( R ‘ 𝐴 ) ∃ 𝑟 ∈ 𝑅 𝑟 ≤s 𝑒 ) |
| 112 |
|
ssltss2 |
⊢ ( 𝐿 <<s 𝑅 → 𝑅 ⊆ No ) |
| 113 |
1 112
|
syl |
⊢ ( 𝜑 → 𝑅 ⊆ No ) |
| 114 |
113
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( R ‘ 𝐴 ) ) → 𝑅 ⊆ No ) |
| 115 |
114
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ( R ‘ 𝐴 ) ) ∧ 𝑟 ∈ 𝑅 ) → 𝑟 ∈ No ) |
| 116 |
|
rightssno |
⊢ ( R ‘ 𝐴 ) ⊆ No |
| 117 |
116
|
sseli |
⊢ ( 𝑒 ∈ ( R ‘ 𝐴 ) → 𝑒 ∈ No ) |
| 118 |
117
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ( R ‘ 𝐴 ) ) ∧ 𝑟 ∈ 𝑅 ) → 𝑒 ∈ No ) |
| 119 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ( R ‘ 𝐴 ) ) ∧ 𝑟 ∈ 𝑅 ) → 𝐵 ∈ No ) |
| 120 |
115 118 119
|
sleadd1d |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ( R ‘ 𝐴 ) ) ∧ 𝑟 ∈ 𝑅 ) → ( 𝑟 ≤s 𝑒 ↔ ( 𝑟 +s 𝐵 ) ≤s ( 𝑒 +s 𝐵 ) ) ) |
| 121 |
120
|
rexbidva |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( R ‘ 𝐴 ) ) → ( ∃ 𝑟 ∈ 𝑅 𝑟 ≤s 𝑒 ↔ ∃ 𝑟 ∈ 𝑅 ( 𝑟 +s 𝐵 ) ≤s ( 𝑒 +s 𝐵 ) ) ) |
| 122 |
121
|
ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑒 ∈ ( R ‘ 𝐴 ) ∃ 𝑟 ∈ 𝑅 𝑟 ≤s 𝑒 ↔ ∀ 𝑒 ∈ ( R ‘ 𝐴 ) ∃ 𝑟 ∈ 𝑅 ( 𝑟 +s 𝐵 ) ≤s ( 𝑒 +s 𝐵 ) ) ) |
| 123 |
111 122
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑒 ∈ ( R ‘ 𝐴 ) ∃ 𝑟 ∈ 𝑅 ( 𝑟 +s 𝐵 ) ≤s ( 𝑒 +s 𝐵 ) ) |
| 124 |
|
eqeq1 |
⊢ ( 𝑤 = 𝑏 → ( 𝑤 = ( 𝑟 +s 𝐵 ) ↔ 𝑏 = ( 𝑟 +s 𝐵 ) ) ) |
| 125 |
124
|
rexbidv |
⊢ ( 𝑤 = 𝑏 → ( ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) ↔ ∃ 𝑟 ∈ 𝑅 𝑏 = ( 𝑟 +s 𝐵 ) ) ) |
| 126 |
125
|
rexab |
⊢ ( ∃ 𝑏 ∈ { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } 𝑏 ≤s ( 𝑒 +s 𝐵 ) ↔ ∃ 𝑏 ( ∃ 𝑟 ∈ 𝑅 𝑏 = ( 𝑟 +s 𝐵 ) ∧ 𝑏 ≤s ( 𝑒 +s 𝐵 ) ) ) |
| 127 |
|
rexcom4 |
⊢ ( ∃ 𝑟 ∈ 𝑅 ∃ 𝑏 ( 𝑏 = ( 𝑟 +s 𝐵 ) ∧ 𝑏 ≤s ( 𝑒 +s 𝐵 ) ) ↔ ∃ 𝑏 ∃ 𝑟 ∈ 𝑅 ( 𝑏 = ( 𝑟 +s 𝐵 ) ∧ 𝑏 ≤s ( 𝑒 +s 𝐵 ) ) ) |
| 128 |
|
ovex |
⊢ ( 𝑟 +s 𝐵 ) ∈ V |
| 129 |
|
breq1 |
⊢ ( 𝑏 = ( 𝑟 +s 𝐵 ) → ( 𝑏 ≤s ( 𝑒 +s 𝐵 ) ↔ ( 𝑟 +s 𝐵 ) ≤s ( 𝑒 +s 𝐵 ) ) ) |
| 130 |
128 129
|
ceqsexv |
⊢ ( ∃ 𝑏 ( 𝑏 = ( 𝑟 +s 𝐵 ) ∧ 𝑏 ≤s ( 𝑒 +s 𝐵 ) ) ↔ ( 𝑟 +s 𝐵 ) ≤s ( 𝑒 +s 𝐵 ) ) |
| 131 |
130
|
rexbii |
⊢ ( ∃ 𝑟 ∈ 𝑅 ∃ 𝑏 ( 𝑏 = ( 𝑟 +s 𝐵 ) ∧ 𝑏 ≤s ( 𝑒 +s 𝐵 ) ) ↔ ∃ 𝑟 ∈ 𝑅 ( 𝑟 +s 𝐵 ) ≤s ( 𝑒 +s 𝐵 ) ) |
| 132 |
|
r19.41v |
⊢ ( ∃ 𝑟 ∈ 𝑅 ( 𝑏 = ( 𝑟 +s 𝐵 ) ∧ 𝑏 ≤s ( 𝑒 +s 𝐵 ) ) ↔ ( ∃ 𝑟 ∈ 𝑅 𝑏 = ( 𝑟 +s 𝐵 ) ∧ 𝑏 ≤s ( 𝑒 +s 𝐵 ) ) ) |
| 133 |
132
|
exbii |
⊢ ( ∃ 𝑏 ∃ 𝑟 ∈ 𝑅 ( 𝑏 = ( 𝑟 +s 𝐵 ) ∧ 𝑏 ≤s ( 𝑒 +s 𝐵 ) ) ↔ ∃ 𝑏 ( ∃ 𝑟 ∈ 𝑅 𝑏 = ( 𝑟 +s 𝐵 ) ∧ 𝑏 ≤s ( 𝑒 +s 𝐵 ) ) ) |
| 134 |
127 131 133
|
3bitr3ri |
⊢ ( ∃ 𝑏 ( ∃ 𝑟 ∈ 𝑅 𝑏 = ( 𝑟 +s 𝐵 ) ∧ 𝑏 ≤s ( 𝑒 +s 𝐵 ) ) ↔ ∃ 𝑟 ∈ 𝑅 ( 𝑟 +s 𝐵 ) ≤s ( 𝑒 +s 𝐵 ) ) |
| 135 |
126 134
|
bitri |
⊢ ( ∃ 𝑏 ∈ { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } 𝑏 ≤s ( 𝑒 +s 𝐵 ) ↔ ∃ 𝑟 ∈ 𝑅 ( 𝑟 +s 𝐵 ) ≤s ( 𝑒 +s 𝐵 ) ) |
| 136 |
|
ssun1 |
⊢ { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ⊆ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) |
| 137 |
|
ssrexv |
⊢ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ⊆ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) → ( ∃ 𝑏 ∈ { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } 𝑏 ≤s ( 𝑒 +s 𝐵 ) → ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s ( 𝑒 +s 𝐵 ) ) ) |
| 138 |
136 137
|
ax-mp |
⊢ ( ∃ 𝑏 ∈ { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } 𝑏 ≤s ( 𝑒 +s 𝐵 ) → ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s ( 𝑒 +s 𝐵 ) ) |
| 139 |
135 138
|
sylbir |
⊢ ( ∃ 𝑟 ∈ 𝑅 ( 𝑟 +s 𝐵 ) ≤s ( 𝑒 +s 𝐵 ) → ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s ( 𝑒 +s 𝐵 ) ) |
| 140 |
139
|
ralimi |
⊢ ( ∀ 𝑒 ∈ ( R ‘ 𝐴 ) ∃ 𝑟 ∈ 𝑅 ( 𝑟 +s 𝐵 ) ≤s ( 𝑒 +s 𝐵 ) → ∀ 𝑒 ∈ ( R ‘ 𝐴 ) ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s ( 𝑒 +s 𝐵 ) ) |
| 141 |
123 140
|
syl |
⊢ ( 𝜑 → ∀ 𝑒 ∈ ( R ‘ 𝐴 ) ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s ( 𝑒 +s 𝐵 ) ) |
| 142 |
2 4
|
cofcutr2d |
⊢ ( 𝜑 → ∀ 𝑓 ∈ ( R ‘ 𝐵 ) ∃ 𝑠 ∈ 𝑆 𝑠 ≤s 𝑓 ) |
| 143 |
|
ssltss2 |
⊢ ( 𝑀 <<s 𝑆 → 𝑆 ⊆ No ) |
| 144 |
2 143
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ No ) |
| 145 |
144
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( R ‘ 𝐵 ) ) → 𝑆 ⊆ No ) |
| 146 |
145
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( R ‘ 𝐵 ) ) ∧ 𝑠 ∈ 𝑆 ) → 𝑠 ∈ No ) |
| 147 |
|
rightssno |
⊢ ( R ‘ 𝐵 ) ⊆ No |
| 148 |
147
|
sseli |
⊢ ( 𝑓 ∈ ( R ‘ 𝐵 ) → 𝑓 ∈ No ) |
| 149 |
148
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( R ‘ 𝐵 ) ) ∧ 𝑠 ∈ 𝑆 ) → 𝑓 ∈ No ) |
| 150 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( R ‘ 𝐵 ) ) ∧ 𝑠 ∈ 𝑆 ) → 𝐴 ∈ No ) |
| 151 |
146 149 150
|
sleadd2d |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( R ‘ 𝐵 ) ) ∧ 𝑠 ∈ 𝑆 ) → ( 𝑠 ≤s 𝑓 ↔ ( 𝐴 +s 𝑠 ) ≤s ( 𝐴 +s 𝑓 ) ) ) |
| 152 |
151
|
rexbidva |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( R ‘ 𝐵 ) ) → ( ∃ 𝑠 ∈ 𝑆 𝑠 ≤s 𝑓 ↔ ∃ 𝑠 ∈ 𝑆 ( 𝐴 +s 𝑠 ) ≤s ( 𝐴 +s 𝑓 ) ) ) |
| 153 |
152
|
ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑓 ∈ ( R ‘ 𝐵 ) ∃ 𝑠 ∈ 𝑆 𝑠 ≤s 𝑓 ↔ ∀ 𝑓 ∈ ( R ‘ 𝐵 ) ∃ 𝑠 ∈ 𝑆 ( 𝐴 +s 𝑠 ) ≤s ( 𝐴 +s 𝑓 ) ) ) |
| 154 |
142 153
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑓 ∈ ( R ‘ 𝐵 ) ∃ 𝑠 ∈ 𝑆 ( 𝐴 +s 𝑠 ) ≤s ( 𝐴 +s 𝑓 ) ) |
| 155 |
|
eqeq1 |
⊢ ( 𝑡 = 𝑏 → ( 𝑡 = ( 𝐴 +s 𝑠 ) ↔ 𝑏 = ( 𝐴 +s 𝑠 ) ) ) |
| 156 |
155
|
rexbidv |
⊢ ( 𝑡 = 𝑏 → ( ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) ↔ ∃ 𝑠 ∈ 𝑆 𝑏 = ( 𝐴 +s 𝑠 ) ) ) |
| 157 |
156
|
rexab |
⊢ ( ∃ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } 𝑏 ≤s ( 𝐴 +s 𝑓 ) ↔ ∃ 𝑏 ( ∃ 𝑠 ∈ 𝑆 𝑏 = ( 𝐴 +s 𝑠 ) ∧ 𝑏 ≤s ( 𝐴 +s 𝑓 ) ) ) |
| 158 |
|
rexcom4 |
⊢ ( ∃ 𝑠 ∈ 𝑆 ∃ 𝑏 ( 𝑏 = ( 𝐴 +s 𝑠 ) ∧ 𝑏 ≤s ( 𝐴 +s 𝑓 ) ) ↔ ∃ 𝑏 ∃ 𝑠 ∈ 𝑆 ( 𝑏 = ( 𝐴 +s 𝑠 ) ∧ 𝑏 ≤s ( 𝐴 +s 𝑓 ) ) ) |
| 159 |
|
ovex |
⊢ ( 𝐴 +s 𝑠 ) ∈ V |
| 160 |
|
breq1 |
⊢ ( 𝑏 = ( 𝐴 +s 𝑠 ) → ( 𝑏 ≤s ( 𝐴 +s 𝑓 ) ↔ ( 𝐴 +s 𝑠 ) ≤s ( 𝐴 +s 𝑓 ) ) ) |
| 161 |
159 160
|
ceqsexv |
⊢ ( ∃ 𝑏 ( 𝑏 = ( 𝐴 +s 𝑠 ) ∧ 𝑏 ≤s ( 𝐴 +s 𝑓 ) ) ↔ ( 𝐴 +s 𝑠 ) ≤s ( 𝐴 +s 𝑓 ) ) |
| 162 |
161
|
rexbii |
⊢ ( ∃ 𝑠 ∈ 𝑆 ∃ 𝑏 ( 𝑏 = ( 𝐴 +s 𝑠 ) ∧ 𝑏 ≤s ( 𝐴 +s 𝑓 ) ) ↔ ∃ 𝑠 ∈ 𝑆 ( 𝐴 +s 𝑠 ) ≤s ( 𝐴 +s 𝑓 ) ) |
| 163 |
|
r19.41v |
⊢ ( ∃ 𝑠 ∈ 𝑆 ( 𝑏 = ( 𝐴 +s 𝑠 ) ∧ 𝑏 ≤s ( 𝐴 +s 𝑓 ) ) ↔ ( ∃ 𝑠 ∈ 𝑆 𝑏 = ( 𝐴 +s 𝑠 ) ∧ 𝑏 ≤s ( 𝐴 +s 𝑓 ) ) ) |
| 164 |
163
|
exbii |
⊢ ( ∃ 𝑏 ∃ 𝑠 ∈ 𝑆 ( 𝑏 = ( 𝐴 +s 𝑠 ) ∧ 𝑏 ≤s ( 𝐴 +s 𝑓 ) ) ↔ ∃ 𝑏 ( ∃ 𝑠 ∈ 𝑆 𝑏 = ( 𝐴 +s 𝑠 ) ∧ 𝑏 ≤s ( 𝐴 +s 𝑓 ) ) ) |
| 165 |
158 162 164
|
3bitr3ri |
⊢ ( ∃ 𝑏 ( ∃ 𝑠 ∈ 𝑆 𝑏 = ( 𝐴 +s 𝑠 ) ∧ 𝑏 ≤s ( 𝐴 +s 𝑓 ) ) ↔ ∃ 𝑠 ∈ 𝑆 ( 𝐴 +s 𝑠 ) ≤s ( 𝐴 +s 𝑓 ) ) |
| 166 |
157 165
|
bitri |
⊢ ( ∃ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } 𝑏 ≤s ( 𝐴 +s 𝑓 ) ↔ ∃ 𝑠 ∈ 𝑆 ( 𝐴 +s 𝑠 ) ≤s ( 𝐴 +s 𝑓 ) ) |
| 167 |
|
ssun2 |
⊢ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ⊆ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) |
| 168 |
|
ssrexv |
⊢ ( { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ⊆ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) → ( ∃ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } 𝑏 ≤s ( 𝐴 +s 𝑓 ) → ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s ( 𝐴 +s 𝑓 ) ) ) |
| 169 |
167 168
|
ax-mp |
⊢ ( ∃ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } 𝑏 ≤s ( 𝐴 +s 𝑓 ) → ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s ( 𝐴 +s 𝑓 ) ) |
| 170 |
166 169
|
sylbir |
⊢ ( ∃ 𝑠 ∈ 𝑆 ( 𝐴 +s 𝑠 ) ≤s ( 𝐴 +s 𝑓 ) → ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s ( 𝐴 +s 𝑓 ) ) |
| 171 |
170
|
ralimi |
⊢ ( ∀ 𝑓 ∈ ( R ‘ 𝐵 ) ∃ 𝑠 ∈ 𝑆 ( 𝐴 +s 𝑠 ) ≤s ( 𝐴 +s 𝑓 ) → ∀ 𝑓 ∈ ( R ‘ 𝐵 ) ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s ( 𝐴 +s 𝑓 ) ) |
| 172 |
154 171
|
syl |
⊢ ( 𝜑 → ∀ 𝑓 ∈ ( R ‘ 𝐵 ) ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s ( 𝐴 +s 𝑓 ) ) |
| 173 |
|
ralunb |
⊢ ( ∀ 𝑎 ∈ ( { 𝑐 ∣ ∃ 𝑒 ∈ ( R ‘ 𝐴 ) 𝑐 = ( 𝑒 +s 𝐵 ) } ∪ { 𝑑 ∣ ∃ 𝑓 ∈ ( R ‘ 𝐵 ) 𝑑 = ( 𝐴 +s 𝑓 ) } ) ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s 𝑎 ↔ ( ∀ 𝑎 ∈ { 𝑐 ∣ ∃ 𝑒 ∈ ( R ‘ 𝐴 ) 𝑐 = ( 𝑒 +s 𝐵 ) } ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s 𝑎 ∧ ∀ 𝑎 ∈ { 𝑑 ∣ ∃ 𝑓 ∈ ( R ‘ 𝐵 ) 𝑑 = ( 𝐴 +s 𝑓 ) } ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s 𝑎 ) ) |
| 174 |
|
eqeq1 |
⊢ ( 𝑐 = 𝑎 → ( 𝑐 = ( 𝑒 +s 𝐵 ) ↔ 𝑎 = ( 𝑒 +s 𝐵 ) ) ) |
| 175 |
174
|
rexbidv |
⊢ ( 𝑐 = 𝑎 → ( ∃ 𝑒 ∈ ( R ‘ 𝐴 ) 𝑐 = ( 𝑒 +s 𝐵 ) ↔ ∃ 𝑒 ∈ ( R ‘ 𝐴 ) 𝑎 = ( 𝑒 +s 𝐵 ) ) ) |
| 176 |
175
|
ralab |
⊢ ( ∀ 𝑎 ∈ { 𝑐 ∣ ∃ 𝑒 ∈ ( R ‘ 𝐴 ) 𝑐 = ( 𝑒 +s 𝐵 ) } ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s 𝑎 ↔ ∀ 𝑎 ( ∃ 𝑒 ∈ ( R ‘ 𝐴 ) 𝑎 = ( 𝑒 +s 𝐵 ) → ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s 𝑎 ) ) |
| 177 |
|
ralcom4 |
⊢ ( ∀ 𝑒 ∈ ( R ‘ 𝐴 ) ∀ 𝑎 ( 𝑎 = ( 𝑒 +s 𝐵 ) → ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s 𝑎 ) ↔ ∀ 𝑎 ∀ 𝑒 ∈ ( R ‘ 𝐴 ) ( 𝑎 = ( 𝑒 +s 𝐵 ) → ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s 𝑎 ) ) |
| 178 |
|
ovex |
⊢ ( 𝑒 +s 𝐵 ) ∈ V |
| 179 |
|
breq2 |
⊢ ( 𝑎 = ( 𝑒 +s 𝐵 ) → ( 𝑏 ≤s 𝑎 ↔ 𝑏 ≤s ( 𝑒 +s 𝐵 ) ) ) |
| 180 |
179
|
rexbidv |
⊢ ( 𝑎 = ( 𝑒 +s 𝐵 ) → ( ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s 𝑎 ↔ ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s ( 𝑒 +s 𝐵 ) ) ) |
| 181 |
178 180
|
ceqsalv |
⊢ ( ∀ 𝑎 ( 𝑎 = ( 𝑒 +s 𝐵 ) → ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s 𝑎 ) ↔ ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s ( 𝑒 +s 𝐵 ) ) |
| 182 |
181
|
ralbii |
⊢ ( ∀ 𝑒 ∈ ( R ‘ 𝐴 ) ∀ 𝑎 ( 𝑎 = ( 𝑒 +s 𝐵 ) → ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s 𝑎 ) ↔ ∀ 𝑒 ∈ ( R ‘ 𝐴 ) ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s ( 𝑒 +s 𝐵 ) ) |
| 183 |
|
r19.23v |
⊢ ( ∀ 𝑒 ∈ ( R ‘ 𝐴 ) ( 𝑎 = ( 𝑒 +s 𝐵 ) → ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s 𝑎 ) ↔ ( ∃ 𝑒 ∈ ( R ‘ 𝐴 ) 𝑎 = ( 𝑒 +s 𝐵 ) → ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s 𝑎 ) ) |
| 184 |
183
|
albii |
⊢ ( ∀ 𝑎 ∀ 𝑒 ∈ ( R ‘ 𝐴 ) ( 𝑎 = ( 𝑒 +s 𝐵 ) → ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s 𝑎 ) ↔ ∀ 𝑎 ( ∃ 𝑒 ∈ ( R ‘ 𝐴 ) 𝑎 = ( 𝑒 +s 𝐵 ) → ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s 𝑎 ) ) |
| 185 |
177 182 184
|
3bitr3ri |
⊢ ( ∀ 𝑎 ( ∃ 𝑒 ∈ ( R ‘ 𝐴 ) 𝑎 = ( 𝑒 +s 𝐵 ) → ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s 𝑎 ) ↔ ∀ 𝑒 ∈ ( R ‘ 𝐴 ) ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s ( 𝑒 +s 𝐵 ) ) |
| 186 |
176 185
|
bitri |
⊢ ( ∀ 𝑎 ∈ { 𝑐 ∣ ∃ 𝑒 ∈ ( R ‘ 𝐴 ) 𝑐 = ( 𝑒 +s 𝐵 ) } ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s 𝑎 ↔ ∀ 𝑒 ∈ ( R ‘ 𝐴 ) ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s ( 𝑒 +s 𝐵 ) ) |
| 187 |
|
eqeq1 |
⊢ ( 𝑑 = 𝑎 → ( 𝑑 = ( 𝐴 +s 𝑓 ) ↔ 𝑎 = ( 𝐴 +s 𝑓 ) ) ) |
| 188 |
187
|
rexbidv |
⊢ ( 𝑑 = 𝑎 → ( ∃ 𝑓 ∈ ( R ‘ 𝐵 ) 𝑑 = ( 𝐴 +s 𝑓 ) ↔ ∃ 𝑓 ∈ ( R ‘ 𝐵 ) 𝑎 = ( 𝐴 +s 𝑓 ) ) ) |
| 189 |
188
|
ralab |
⊢ ( ∀ 𝑎 ∈ { 𝑑 ∣ ∃ 𝑓 ∈ ( R ‘ 𝐵 ) 𝑑 = ( 𝐴 +s 𝑓 ) } ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s 𝑎 ↔ ∀ 𝑎 ( ∃ 𝑓 ∈ ( R ‘ 𝐵 ) 𝑎 = ( 𝐴 +s 𝑓 ) → ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s 𝑎 ) ) |
| 190 |
|
ralcom4 |
⊢ ( ∀ 𝑓 ∈ ( R ‘ 𝐵 ) ∀ 𝑎 ( 𝑎 = ( 𝐴 +s 𝑓 ) → ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s 𝑎 ) ↔ ∀ 𝑎 ∀ 𝑓 ∈ ( R ‘ 𝐵 ) ( 𝑎 = ( 𝐴 +s 𝑓 ) → ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s 𝑎 ) ) |
| 191 |
|
ovex |
⊢ ( 𝐴 +s 𝑓 ) ∈ V |
| 192 |
|
breq2 |
⊢ ( 𝑎 = ( 𝐴 +s 𝑓 ) → ( 𝑏 ≤s 𝑎 ↔ 𝑏 ≤s ( 𝐴 +s 𝑓 ) ) ) |
| 193 |
192
|
rexbidv |
⊢ ( 𝑎 = ( 𝐴 +s 𝑓 ) → ( ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s 𝑎 ↔ ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s ( 𝐴 +s 𝑓 ) ) ) |
| 194 |
191 193
|
ceqsalv |
⊢ ( ∀ 𝑎 ( 𝑎 = ( 𝐴 +s 𝑓 ) → ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s 𝑎 ) ↔ ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s ( 𝐴 +s 𝑓 ) ) |
| 195 |
194
|
ralbii |
⊢ ( ∀ 𝑓 ∈ ( R ‘ 𝐵 ) ∀ 𝑎 ( 𝑎 = ( 𝐴 +s 𝑓 ) → ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s 𝑎 ) ↔ ∀ 𝑓 ∈ ( R ‘ 𝐵 ) ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s ( 𝐴 +s 𝑓 ) ) |
| 196 |
|
r19.23v |
⊢ ( ∀ 𝑓 ∈ ( R ‘ 𝐵 ) ( 𝑎 = ( 𝐴 +s 𝑓 ) → ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s 𝑎 ) ↔ ( ∃ 𝑓 ∈ ( R ‘ 𝐵 ) 𝑎 = ( 𝐴 +s 𝑓 ) → ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s 𝑎 ) ) |
| 197 |
196
|
albii |
⊢ ( ∀ 𝑎 ∀ 𝑓 ∈ ( R ‘ 𝐵 ) ( 𝑎 = ( 𝐴 +s 𝑓 ) → ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s 𝑎 ) ↔ ∀ 𝑎 ( ∃ 𝑓 ∈ ( R ‘ 𝐵 ) 𝑎 = ( 𝐴 +s 𝑓 ) → ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s 𝑎 ) ) |
| 198 |
190 195 197
|
3bitr3ri |
⊢ ( ∀ 𝑎 ( ∃ 𝑓 ∈ ( R ‘ 𝐵 ) 𝑎 = ( 𝐴 +s 𝑓 ) → ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s 𝑎 ) ↔ ∀ 𝑓 ∈ ( R ‘ 𝐵 ) ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s ( 𝐴 +s 𝑓 ) ) |
| 199 |
189 198
|
bitri |
⊢ ( ∀ 𝑎 ∈ { 𝑑 ∣ ∃ 𝑓 ∈ ( R ‘ 𝐵 ) 𝑑 = ( 𝐴 +s 𝑓 ) } ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s 𝑎 ↔ ∀ 𝑓 ∈ ( R ‘ 𝐵 ) ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s ( 𝐴 +s 𝑓 ) ) |
| 200 |
186 199
|
anbi12i |
⊢ ( ( ∀ 𝑎 ∈ { 𝑐 ∣ ∃ 𝑒 ∈ ( R ‘ 𝐴 ) 𝑐 = ( 𝑒 +s 𝐵 ) } ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s 𝑎 ∧ ∀ 𝑎 ∈ { 𝑑 ∣ ∃ 𝑓 ∈ ( R ‘ 𝐵 ) 𝑑 = ( 𝐴 +s 𝑓 ) } ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s 𝑎 ) ↔ ( ∀ 𝑒 ∈ ( R ‘ 𝐴 ) ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s ( 𝑒 +s 𝐵 ) ∧ ∀ 𝑓 ∈ ( R ‘ 𝐵 ) ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s ( 𝐴 +s 𝑓 ) ) ) |
| 201 |
173 200
|
bitri |
⊢ ( ∀ 𝑎 ∈ ( { 𝑐 ∣ ∃ 𝑒 ∈ ( R ‘ 𝐴 ) 𝑐 = ( 𝑒 +s 𝐵 ) } ∪ { 𝑑 ∣ ∃ 𝑓 ∈ ( R ‘ 𝐵 ) 𝑑 = ( 𝐴 +s 𝑓 ) } ) ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s 𝑎 ↔ ( ∀ 𝑒 ∈ ( R ‘ 𝐴 ) ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s ( 𝑒 +s 𝐵 ) ∧ ∀ 𝑓 ∈ ( R ‘ 𝐵 ) ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s ( 𝐴 +s 𝑓 ) ) ) |
| 202 |
141 172 201
|
sylanbrc |
⊢ ( 𝜑 → ∀ 𝑎 ∈ ( { 𝑐 ∣ ∃ 𝑒 ∈ ( R ‘ 𝐴 ) 𝑐 = ( 𝑒 +s 𝐵 ) } ∪ { 𝑑 ∣ ∃ 𝑓 ∈ ( R ‘ 𝐵 ) 𝑑 = ( 𝐴 +s 𝑓 ) } ) ∃ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) 𝑏 ≤s 𝑎 ) |
| 203 |
|
eqid |
⊢ ( 𝑙 ∈ 𝐿 ↦ ( 𝑙 +s 𝐵 ) ) = ( 𝑙 ∈ 𝐿 ↦ ( 𝑙 +s 𝐵 ) ) |
| 204 |
203
|
rnmpt |
⊢ ran ( 𝑙 ∈ 𝐿 ↦ ( 𝑙 +s 𝐵 ) ) = { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } |
| 205 |
|
ssltex1 |
⊢ ( 𝐿 <<s 𝑅 → 𝐿 ∈ V ) |
| 206 |
1 205
|
syl |
⊢ ( 𝜑 → 𝐿 ∈ V ) |
| 207 |
206
|
mptexd |
⊢ ( 𝜑 → ( 𝑙 ∈ 𝐿 ↦ ( 𝑙 +s 𝐵 ) ) ∈ V ) |
| 208 |
|
rnexg |
⊢ ( ( 𝑙 ∈ 𝐿 ↦ ( 𝑙 +s 𝐵 ) ) ∈ V → ran ( 𝑙 ∈ 𝐿 ↦ ( 𝑙 +s 𝐵 ) ) ∈ V ) |
| 209 |
207 208
|
syl |
⊢ ( 𝜑 → ran ( 𝑙 ∈ 𝐿 ↦ ( 𝑙 +s 𝐵 ) ) ∈ V ) |
| 210 |
204 209
|
eqeltrrid |
⊢ ( 𝜑 → { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∈ V ) |
| 211 |
|
eqid |
⊢ ( 𝑚 ∈ 𝑀 ↦ ( 𝐴 +s 𝑚 ) ) = ( 𝑚 ∈ 𝑀 ↦ ( 𝐴 +s 𝑚 ) ) |
| 212 |
211
|
rnmpt |
⊢ ran ( 𝑚 ∈ 𝑀 ↦ ( 𝐴 +s 𝑚 ) ) = { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } |
| 213 |
|
ssltex1 |
⊢ ( 𝑀 <<s 𝑆 → 𝑀 ∈ V ) |
| 214 |
2 213
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ V ) |
| 215 |
214
|
mptexd |
⊢ ( 𝜑 → ( 𝑚 ∈ 𝑀 ↦ ( 𝐴 +s 𝑚 ) ) ∈ V ) |
| 216 |
|
rnexg |
⊢ ( ( 𝑚 ∈ 𝑀 ↦ ( 𝐴 +s 𝑚 ) ) ∈ V → ran ( 𝑚 ∈ 𝑀 ↦ ( 𝐴 +s 𝑚 ) ) ∈ V ) |
| 217 |
215 216
|
syl |
⊢ ( 𝜑 → ran ( 𝑚 ∈ 𝑀 ↦ ( 𝐴 +s 𝑚 ) ) ∈ V ) |
| 218 |
212 217
|
eqeltrrid |
⊢ ( 𝜑 → { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ∈ V ) |
| 219 |
210 218
|
unexd |
⊢ ( 𝜑 → ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) ∈ V ) |
| 220 |
|
snex |
⊢ { ( 𝐴 +s 𝐵 ) } ∈ V |
| 221 |
220
|
a1i |
⊢ ( 𝜑 → { ( 𝐴 +s 𝐵 ) } ∈ V ) |
| 222 |
24
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ 𝐿 ) → 𝑙 ∈ No ) |
| 223 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ 𝐿 ) → 𝐵 ∈ No ) |
| 224 |
222 223
|
addscld |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ 𝐿 ) → ( 𝑙 +s 𝐵 ) ∈ No ) |
| 225 |
|
eleq1 |
⊢ ( 𝑦 = ( 𝑙 +s 𝐵 ) → ( 𝑦 ∈ No ↔ ( 𝑙 +s 𝐵 ) ∈ No ) ) |
| 226 |
224 225
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ 𝐿 ) → ( 𝑦 = ( 𝑙 +s 𝐵 ) → 𝑦 ∈ No ) ) |
| 227 |
226
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) → 𝑦 ∈ No ) ) |
| 228 |
227
|
abssdv |
⊢ ( 𝜑 → { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ⊆ No ) |
| 229 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑀 ) → 𝐴 ∈ No ) |
| 230 |
55
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑀 ) → 𝑚 ∈ No ) |
| 231 |
229 230
|
addscld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑀 ) → ( 𝐴 +s 𝑚 ) ∈ No ) |
| 232 |
|
eleq1 |
⊢ ( 𝑧 = ( 𝐴 +s 𝑚 ) → ( 𝑧 ∈ No ↔ ( 𝐴 +s 𝑚 ) ∈ No ) ) |
| 233 |
231 232
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑀 ) → ( 𝑧 = ( 𝐴 +s 𝑚 ) → 𝑧 ∈ No ) ) |
| 234 |
233
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) → 𝑧 ∈ No ) ) |
| 235 |
234
|
abssdv |
⊢ ( 𝜑 → { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ⊆ No ) |
| 236 |
228 235
|
unssd |
⊢ ( 𝜑 → ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) ⊆ No ) |
| 237 |
6 8
|
addscld |
⊢ ( 𝜑 → ( 𝐴 +s 𝐵 ) ∈ No ) |
| 238 |
237
|
snssd |
⊢ ( 𝜑 → { ( 𝐴 +s 𝐵 ) } ⊆ No ) |
| 239 |
|
velsn |
⊢ ( 𝑏 ∈ { ( 𝐴 +s 𝐵 ) } ↔ 𝑏 = ( 𝐴 +s 𝐵 ) ) |
| 240 |
|
elun |
⊢ ( 𝑎 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) ↔ ( 𝑎 ∈ { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∨ 𝑎 ∈ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) ) |
| 241 |
|
vex |
⊢ 𝑎 ∈ V |
| 242 |
|
eqeq1 |
⊢ ( 𝑦 = 𝑎 → ( 𝑦 = ( 𝑙 +s 𝐵 ) ↔ 𝑎 = ( 𝑙 +s 𝐵 ) ) ) |
| 243 |
242
|
rexbidv |
⊢ ( 𝑦 = 𝑎 → ( ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) ↔ ∃ 𝑙 ∈ 𝐿 𝑎 = ( 𝑙 +s 𝐵 ) ) ) |
| 244 |
241 243
|
elab |
⊢ ( 𝑎 ∈ { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ↔ ∃ 𝑙 ∈ 𝐿 𝑎 = ( 𝑙 +s 𝐵 ) ) |
| 245 |
|
eqeq1 |
⊢ ( 𝑧 = 𝑎 → ( 𝑧 = ( 𝐴 +s 𝑚 ) ↔ 𝑎 = ( 𝐴 +s 𝑚 ) ) ) |
| 246 |
245
|
rexbidv |
⊢ ( 𝑧 = 𝑎 → ( ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) ↔ ∃ 𝑚 ∈ 𝑀 𝑎 = ( 𝐴 +s 𝑚 ) ) ) |
| 247 |
241 246
|
elab |
⊢ ( 𝑎 ∈ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ↔ ∃ 𝑚 ∈ 𝑀 𝑎 = ( 𝐴 +s 𝑚 ) ) |
| 248 |
244 247
|
orbi12i |
⊢ ( ( 𝑎 ∈ { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∨ 𝑎 ∈ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) ↔ ( ∃ 𝑙 ∈ 𝐿 𝑎 = ( 𝑙 +s 𝐵 ) ∨ ∃ 𝑚 ∈ 𝑀 𝑎 = ( 𝐴 +s 𝑚 ) ) ) |
| 249 |
240 248
|
bitri |
⊢ ( 𝑎 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) ↔ ( ∃ 𝑙 ∈ 𝐿 𝑎 = ( 𝑙 +s 𝐵 ) ∨ ∃ 𝑚 ∈ 𝑀 𝑎 = ( 𝐴 +s 𝑚 ) ) ) |
| 250 |
|
scutcut |
⊢ ( 𝐿 <<s 𝑅 → ( ( 𝐿 |s 𝑅 ) ∈ No ∧ 𝐿 <<s { ( 𝐿 |s 𝑅 ) } ∧ { ( 𝐿 |s 𝑅 ) } <<s 𝑅 ) ) |
| 251 |
1 250
|
syl |
⊢ ( 𝜑 → ( ( 𝐿 |s 𝑅 ) ∈ No ∧ 𝐿 <<s { ( 𝐿 |s 𝑅 ) } ∧ { ( 𝐿 |s 𝑅 ) } <<s 𝑅 ) ) |
| 252 |
251
|
simp2d |
⊢ ( 𝜑 → 𝐿 <<s { ( 𝐿 |s 𝑅 ) } ) |
| 253 |
252
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ 𝐿 ) → 𝐿 <<s { ( 𝐿 |s 𝑅 ) } ) |
| 254 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ 𝐿 ) → 𝑙 ∈ 𝐿 ) |
| 255 |
|
ovex |
⊢ ( 𝐿 |s 𝑅 ) ∈ V |
| 256 |
255
|
snid |
⊢ ( 𝐿 |s 𝑅 ) ∈ { ( 𝐿 |s 𝑅 ) } |
| 257 |
256
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ 𝐿 ) → ( 𝐿 |s 𝑅 ) ∈ { ( 𝐿 |s 𝑅 ) } ) |
| 258 |
253 254 257
|
ssltsepcd |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ 𝐿 ) → 𝑙 <s ( 𝐿 |s 𝑅 ) ) |
| 259 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ 𝐿 ) → 𝐴 = ( 𝐿 |s 𝑅 ) ) |
| 260 |
258 259
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ 𝐿 ) → 𝑙 <s 𝐴 ) |
| 261 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ 𝐿 ) → 𝐴 ∈ No ) |
| 262 |
222 261 223
|
sltadd1d |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ 𝐿 ) → ( 𝑙 <s 𝐴 ↔ ( 𝑙 +s 𝐵 ) <s ( 𝐴 +s 𝐵 ) ) ) |
| 263 |
260 262
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ 𝐿 ) → ( 𝑙 +s 𝐵 ) <s ( 𝐴 +s 𝐵 ) ) |
| 264 |
|
breq1 |
⊢ ( 𝑎 = ( 𝑙 +s 𝐵 ) → ( 𝑎 <s ( 𝐴 +s 𝐵 ) ↔ ( 𝑙 +s 𝐵 ) <s ( 𝐴 +s 𝐵 ) ) ) |
| 265 |
263 264
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ 𝐿 ) → ( 𝑎 = ( 𝑙 +s 𝐵 ) → 𝑎 <s ( 𝐴 +s 𝐵 ) ) ) |
| 266 |
265
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑙 ∈ 𝐿 𝑎 = ( 𝑙 +s 𝐵 ) → 𝑎 <s ( 𝐴 +s 𝐵 ) ) ) |
| 267 |
|
scutcut |
⊢ ( 𝑀 <<s 𝑆 → ( ( 𝑀 |s 𝑆 ) ∈ No ∧ 𝑀 <<s { ( 𝑀 |s 𝑆 ) } ∧ { ( 𝑀 |s 𝑆 ) } <<s 𝑆 ) ) |
| 268 |
2 267
|
syl |
⊢ ( 𝜑 → ( ( 𝑀 |s 𝑆 ) ∈ No ∧ 𝑀 <<s { ( 𝑀 |s 𝑆 ) } ∧ { ( 𝑀 |s 𝑆 ) } <<s 𝑆 ) ) |
| 269 |
268
|
simp2d |
⊢ ( 𝜑 → 𝑀 <<s { ( 𝑀 |s 𝑆 ) } ) |
| 270 |
269
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑀 ) → 𝑀 <<s { ( 𝑀 |s 𝑆 ) } ) |
| 271 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑀 ) → 𝑚 ∈ 𝑀 ) |
| 272 |
|
ovex |
⊢ ( 𝑀 |s 𝑆 ) ∈ V |
| 273 |
272
|
snid |
⊢ ( 𝑀 |s 𝑆 ) ∈ { ( 𝑀 |s 𝑆 ) } |
| 274 |
273
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑀 ) → ( 𝑀 |s 𝑆 ) ∈ { ( 𝑀 |s 𝑆 ) } ) |
| 275 |
270 271 274
|
ssltsepcd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑀 ) → 𝑚 <s ( 𝑀 |s 𝑆 ) ) |
| 276 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑀 ) → 𝐵 = ( 𝑀 |s 𝑆 ) ) |
| 277 |
275 276
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑀 ) → 𝑚 <s 𝐵 ) |
| 278 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑀 ) → 𝐵 ∈ No ) |
| 279 |
230 278 229
|
sltadd2d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑀 ) → ( 𝑚 <s 𝐵 ↔ ( 𝐴 +s 𝑚 ) <s ( 𝐴 +s 𝐵 ) ) ) |
| 280 |
277 279
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑀 ) → ( 𝐴 +s 𝑚 ) <s ( 𝐴 +s 𝐵 ) ) |
| 281 |
|
breq1 |
⊢ ( 𝑎 = ( 𝐴 +s 𝑚 ) → ( 𝑎 <s ( 𝐴 +s 𝐵 ) ↔ ( 𝐴 +s 𝑚 ) <s ( 𝐴 +s 𝐵 ) ) ) |
| 282 |
280 281
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑀 ) → ( 𝑎 = ( 𝐴 +s 𝑚 ) → 𝑎 <s ( 𝐴 +s 𝐵 ) ) ) |
| 283 |
282
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑚 ∈ 𝑀 𝑎 = ( 𝐴 +s 𝑚 ) → 𝑎 <s ( 𝐴 +s 𝐵 ) ) ) |
| 284 |
266 283
|
jaod |
⊢ ( 𝜑 → ( ( ∃ 𝑙 ∈ 𝐿 𝑎 = ( 𝑙 +s 𝐵 ) ∨ ∃ 𝑚 ∈ 𝑀 𝑎 = ( 𝐴 +s 𝑚 ) ) → 𝑎 <s ( 𝐴 +s 𝐵 ) ) ) |
| 285 |
249 284
|
biimtrid |
⊢ ( 𝜑 → ( 𝑎 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) → 𝑎 <s ( 𝐴 +s 𝐵 ) ) ) |
| 286 |
285
|
imp |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) ) → 𝑎 <s ( 𝐴 +s 𝐵 ) ) |
| 287 |
|
breq2 |
⊢ ( 𝑏 = ( 𝐴 +s 𝐵 ) → ( 𝑎 <s 𝑏 ↔ 𝑎 <s ( 𝐴 +s 𝐵 ) ) ) |
| 288 |
286 287
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) ) → ( 𝑏 = ( 𝐴 +s 𝐵 ) → 𝑎 <s 𝑏 ) ) |
| 289 |
239 288
|
biimtrid |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) ) → ( 𝑏 ∈ { ( 𝐴 +s 𝐵 ) } → 𝑎 <s 𝑏 ) ) |
| 290 |
289
|
3impia |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) ∧ 𝑏 ∈ { ( 𝐴 +s 𝐵 ) } ) → 𝑎 <s 𝑏 ) |
| 291 |
219 221 236 238 290
|
ssltd |
⊢ ( 𝜑 → ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) <<s { ( 𝐴 +s 𝐵 ) } ) |
| 292 |
10
|
sneqd |
⊢ ( 𝜑 → { ( 𝐴 +s 𝐵 ) } = { ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) 𝑎 = ( 𝑝 +s 𝐵 ) } ∪ { 𝑏 ∣ ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑏 = ( 𝐴 +s 𝑞 ) } ) |s ( { 𝑐 ∣ ∃ 𝑒 ∈ ( R ‘ 𝐴 ) 𝑐 = ( 𝑒 +s 𝐵 ) } ∪ { 𝑑 ∣ ∃ 𝑓 ∈ ( R ‘ 𝐵 ) 𝑑 = ( 𝐴 +s 𝑓 ) } ) ) } ) |
| 293 |
291 292
|
breqtrd |
⊢ ( 𝜑 → ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) <<s { ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) 𝑎 = ( 𝑝 +s 𝐵 ) } ∪ { 𝑏 ∣ ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑏 = ( 𝐴 +s 𝑞 ) } ) |s ( { 𝑐 ∣ ∃ 𝑒 ∈ ( R ‘ 𝐴 ) 𝑐 = ( 𝑒 +s 𝐵 ) } ∪ { 𝑑 ∣ ∃ 𝑓 ∈ ( R ‘ 𝐵 ) 𝑑 = ( 𝐴 +s 𝑓 ) } ) ) } ) |
| 294 |
|
eqid |
⊢ ( 𝑟 ∈ 𝑅 ↦ ( 𝑟 +s 𝐵 ) ) = ( 𝑟 ∈ 𝑅 ↦ ( 𝑟 +s 𝐵 ) ) |
| 295 |
294
|
rnmpt |
⊢ ran ( 𝑟 ∈ 𝑅 ↦ ( 𝑟 +s 𝐵 ) ) = { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } |
| 296 |
|
ssltex2 |
⊢ ( 𝐿 <<s 𝑅 → 𝑅 ∈ V ) |
| 297 |
1 296
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ V ) |
| 298 |
297
|
mptexd |
⊢ ( 𝜑 → ( 𝑟 ∈ 𝑅 ↦ ( 𝑟 +s 𝐵 ) ) ∈ V ) |
| 299 |
|
rnexg |
⊢ ( ( 𝑟 ∈ 𝑅 ↦ ( 𝑟 +s 𝐵 ) ) ∈ V → ran ( 𝑟 ∈ 𝑅 ↦ ( 𝑟 +s 𝐵 ) ) ∈ V ) |
| 300 |
298 299
|
syl |
⊢ ( 𝜑 → ran ( 𝑟 ∈ 𝑅 ↦ ( 𝑟 +s 𝐵 ) ) ∈ V ) |
| 301 |
295 300
|
eqeltrrid |
⊢ ( 𝜑 → { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∈ V ) |
| 302 |
|
eqid |
⊢ ( 𝑠 ∈ 𝑆 ↦ ( 𝐴 +s 𝑠 ) ) = ( 𝑠 ∈ 𝑆 ↦ ( 𝐴 +s 𝑠 ) ) |
| 303 |
302
|
rnmpt |
⊢ ran ( 𝑠 ∈ 𝑆 ↦ ( 𝐴 +s 𝑠 ) ) = { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } |
| 304 |
|
ssltex2 |
⊢ ( 𝑀 <<s 𝑆 → 𝑆 ∈ V ) |
| 305 |
2 304
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ V ) |
| 306 |
305
|
mptexd |
⊢ ( 𝜑 → ( 𝑠 ∈ 𝑆 ↦ ( 𝐴 +s 𝑠 ) ) ∈ V ) |
| 307 |
|
rnexg |
⊢ ( ( 𝑠 ∈ 𝑆 ↦ ( 𝐴 +s 𝑠 ) ) ∈ V → ran ( 𝑠 ∈ 𝑆 ↦ ( 𝐴 +s 𝑠 ) ) ∈ V ) |
| 308 |
306 307
|
syl |
⊢ ( 𝜑 → ran ( 𝑠 ∈ 𝑆 ↦ ( 𝐴 +s 𝑠 ) ) ∈ V ) |
| 309 |
303 308
|
eqeltrrid |
⊢ ( 𝜑 → { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ∈ V ) |
| 310 |
301 309
|
unexd |
⊢ ( 𝜑 → ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) ∈ V ) |
| 311 |
113
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑅 ) → 𝑟 ∈ No ) |
| 312 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑅 ) → 𝐵 ∈ No ) |
| 313 |
311 312
|
addscld |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑅 ) → ( 𝑟 +s 𝐵 ) ∈ No ) |
| 314 |
|
eleq1 |
⊢ ( 𝑤 = ( 𝑟 +s 𝐵 ) → ( 𝑤 ∈ No ↔ ( 𝑟 +s 𝐵 ) ∈ No ) ) |
| 315 |
313 314
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑅 ) → ( 𝑤 = ( 𝑟 +s 𝐵 ) → 𝑤 ∈ No ) ) |
| 316 |
315
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) → 𝑤 ∈ No ) ) |
| 317 |
316
|
abssdv |
⊢ ( 𝜑 → { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ⊆ No ) |
| 318 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → 𝐴 ∈ No ) |
| 319 |
144
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → 𝑠 ∈ No ) |
| 320 |
318 319
|
addscld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → ( 𝐴 +s 𝑠 ) ∈ No ) |
| 321 |
|
eleq1 |
⊢ ( 𝑡 = ( 𝐴 +s 𝑠 ) → ( 𝑡 ∈ No ↔ ( 𝐴 +s 𝑠 ) ∈ No ) ) |
| 322 |
320 321
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → ( 𝑡 = ( 𝐴 +s 𝑠 ) → 𝑡 ∈ No ) ) |
| 323 |
322
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) → 𝑡 ∈ No ) ) |
| 324 |
323
|
abssdv |
⊢ ( 𝜑 → { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ⊆ No ) |
| 325 |
317 324
|
unssd |
⊢ ( 𝜑 → ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) ⊆ No ) |
| 326 |
|
velsn |
⊢ ( 𝑎 ∈ { ( 𝐴 +s 𝐵 ) } ↔ 𝑎 = ( 𝐴 +s 𝐵 ) ) |
| 327 |
|
elun |
⊢ ( 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) ↔ ( 𝑏 ∈ { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∨ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) ) |
| 328 |
|
vex |
⊢ 𝑏 ∈ V |
| 329 |
328 125
|
elab |
⊢ ( 𝑏 ∈ { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ↔ ∃ 𝑟 ∈ 𝑅 𝑏 = ( 𝑟 +s 𝐵 ) ) |
| 330 |
328 156
|
elab |
⊢ ( 𝑏 ∈ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ↔ ∃ 𝑠 ∈ 𝑆 𝑏 = ( 𝐴 +s 𝑠 ) ) |
| 331 |
329 330
|
orbi12i |
⊢ ( ( 𝑏 ∈ { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∨ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) ↔ ( ∃ 𝑟 ∈ 𝑅 𝑏 = ( 𝑟 +s 𝐵 ) ∨ ∃ 𝑠 ∈ 𝑆 𝑏 = ( 𝐴 +s 𝑠 ) ) ) |
| 332 |
327 331
|
bitri |
⊢ ( 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) ↔ ( ∃ 𝑟 ∈ 𝑅 𝑏 = ( 𝑟 +s 𝐵 ) ∨ ∃ 𝑠 ∈ 𝑆 𝑏 = ( 𝐴 +s 𝑠 ) ) ) |
| 333 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑅 ) → 𝐴 = ( 𝐿 |s 𝑅 ) ) |
| 334 |
251
|
simp3d |
⊢ ( 𝜑 → { ( 𝐿 |s 𝑅 ) } <<s 𝑅 ) |
| 335 |
334
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑅 ) → { ( 𝐿 |s 𝑅 ) } <<s 𝑅 ) |
| 336 |
256
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑅 ) → ( 𝐿 |s 𝑅 ) ∈ { ( 𝐿 |s 𝑅 ) } ) |
| 337 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑅 ) → 𝑟 ∈ 𝑅 ) |
| 338 |
335 336 337
|
ssltsepcd |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑅 ) → ( 𝐿 |s 𝑅 ) <s 𝑟 ) |
| 339 |
333 338
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑅 ) → 𝐴 <s 𝑟 ) |
| 340 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑅 ) → 𝐴 ∈ No ) |
| 341 |
340 311 312
|
sltadd1d |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑅 ) → ( 𝐴 <s 𝑟 ↔ ( 𝐴 +s 𝐵 ) <s ( 𝑟 +s 𝐵 ) ) ) |
| 342 |
339 341
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑅 ) → ( 𝐴 +s 𝐵 ) <s ( 𝑟 +s 𝐵 ) ) |
| 343 |
|
breq2 |
⊢ ( 𝑏 = ( 𝑟 +s 𝐵 ) → ( ( 𝐴 +s 𝐵 ) <s 𝑏 ↔ ( 𝐴 +s 𝐵 ) <s ( 𝑟 +s 𝐵 ) ) ) |
| 344 |
342 343
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑅 ) → ( 𝑏 = ( 𝑟 +s 𝐵 ) → ( 𝐴 +s 𝐵 ) <s 𝑏 ) ) |
| 345 |
344
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑟 ∈ 𝑅 𝑏 = ( 𝑟 +s 𝐵 ) → ( 𝐴 +s 𝐵 ) <s 𝑏 ) ) |
| 346 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → 𝐵 = ( 𝑀 |s 𝑆 ) ) |
| 347 |
268
|
simp3d |
⊢ ( 𝜑 → { ( 𝑀 |s 𝑆 ) } <<s 𝑆 ) |
| 348 |
347
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → { ( 𝑀 |s 𝑆 ) } <<s 𝑆 ) |
| 349 |
273
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → ( 𝑀 |s 𝑆 ) ∈ { ( 𝑀 |s 𝑆 ) } ) |
| 350 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → 𝑠 ∈ 𝑆 ) |
| 351 |
348 349 350
|
ssltsepcd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → ( 𝑀 |s 𝑆 ) <s 𝑠 ) |
| 352 |
346 351
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → 𝐵 <s 𝑠 ) |
| 353 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → 𝐵 ∈ No ) |
| 354 |
353 319 318
|
sltadd2d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → ( 𝐵 <s 𝑠 ↔ ( 𝐴 +s 𝐵 ) <s ( 𝐴 +s 𝑠 ) ) ) |
| 355 |
352 354
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → ( 𝐴 +s 𝐵 ) <s ( 𝐴 +s 𝑠 ) ) |
| 356 |
|
breq2 |
⊢ ( 𝑏 = ( 𝐴 +s 𝑠 ) → ( ( 𝐴 +s 𝐵 ) <s 𝑏 ↔ ( 𝐴 +s 𝐵 ) <s ( 𝐴 +s 𝑠 ) ) ) |
| 357 |
355 356
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → ( 𝑏 = ( 𝐴 +s 𝑠 ) → ( 𝐴 +s 𝐵 ) <s 𝑏 ) ) |
| 358 |
357
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑠 ∈ 𝑆 𝑏 = ( 𝐴 +s 𝑠 ) → ( 𝐴 +s 𝐵 ) <s 𝑏 ) ) |
| 359 |
345 358
|
jaod |
⊢ ( 𝜑 → ( ( ∃ 𝑟 ∈ 𝑅 𝑏 = ( 𝑟 +s 𝐵 ) ∨ ∃ 𝑠 ∈ 𝑆 𝑏 = ( 𝐴 +s 𝑠 ) ) → ( 𝐴 +s 𝐵 ) <s 𝑏 ) ) |
| 360 |
332 359
|
biimtrid |
⊢ ( 𝜑 → ( 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) → ( 𝐴 +s 𝐵 ) <s 𝑏 ) ) |
| 361 |
360
|
imp |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) ) → ( 𝐴 +s 𝐵 ) <s 𝑏 ) |
| 362 |
|
breq1 |
⊢ ( 𝑎 = ( 𝐴 +s 𝐵 ) → ( 𝑎 <s 𝑏 ↔ ( 𝐴 +s 𝐵 ) <s 𝑏 ) ) |
| 363 |
361 362
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) ) → ( 𝑎 = ( 𝐴 +s 𝐵 ) → 𝑎 <s 𝑏 ) ) |
| 364 |
363
|
ex |
⊢ ( 𝜑 → ( 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) → ( 𝑎 = ( 𝐴 +s 𝐵 ) → 𝑎 <s 𝑏 ) ) ) |
| 365 |
364
|
com23 |
⊢ ( 𝜑 → ( 𝑎 = ( 𝐴 +s 𝐵 ) → ( 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) → 𝑎 <s 𝑏 ) ) ) |
| 366 |
326 365
|
biimtrid |
⊢ ( 𝜑 → ( 𝑎 ∈ { ( 𝐴 +s 𝐵 ) } → ( 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) → 𝑎 <s 𝑏 ) ) ) |
| 367 |
366
|
3imp |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ { ( 𝐴 +s 𝐵 ) } ∧ 𝑏 ∈ ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) ) → 𝑎 <s 𝑏 ) |
| 368 |
221 310 238 325 367
|
ssltd |
⊢ ( 𝜑 → { ( 𝐴 +s 𝐵 ) } <<s ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) ) |
| 369 |
292 368
|
eqbrtrrd |
⊢ ( 𝜑 → { ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) 𝑎 = ( 𝑝 +s 𝐵 ) } ∪ { 𝑏 ∣ ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑏 = ( 𝐴 +s 𝑞 ) } ) |s ( { 𝑐 ∣ ∃ 𝑒 ∈ ( R ‘ 𝐴 ) 𝑐 = ( 𝑒 +s 𝐵 ) } ∪ { 𝑑 ∣ ∃ 𝑓 ∈ ( R ‘ 𝐵 ) 𝑑 = ( 𝐴 +s 𝑓 ) } ) ) } <<s ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) ) |
| 370 |
18 110 202 293 369
|
cofcut1d |
⊢ ( 𝜑 → ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) 𝑎 = ( 𝑝 +s 𝐵 ) } ∪ { 𝑏 ∣ ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑏 = ( 𝐴 +s 𝑞 ) } ) |s ( { 𝑐 ∣ ∃ 𝑒 ∈ ( R ‘ 𝐴 ) 𝑐 = ( 𝑒 +s 𝐵 ) } ∪ { 𝑑 ∣ ∃ 𝑓 ∈ ( R ‘ 𝐵 ) 𝑑 = ( 𝐴 +s 𝑓 ) } ) ) = ( ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) |s ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) ) ) |
| 371 |
10 370
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 +s 𝐵 ) = ( ( { 𝑦 ∣ ∃ 𝑙 ∈ 𝐿 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ 𝑀 𝑧 = ( 𝐴 +s 𝑚 ) } ) |s ( { 𝑤 ∣ ∃ 𝑟 ∈ 𝑅 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ 𝑆 𝑡 = ( 𝐴 +s 𝑠 ) } ) ) ) |