| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-adds |
⊢ +s = norec2 ( ( 𝑥 ∈ V , 𝑎 ∈ V ↦ ( ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ ( 1st ‘ 𝑥 ) ) 𝑦 = ( 𝑙 𝑎 ( 2nd ‘ 𝑥 ) ) } ∪ { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ ( 2nd ‘ 𝑥 ) ) 𝑧 = ( ( 1st ‘ 𝑥 ) 𝑎 𝑙 ) } ) |s ( { 𝑦 ∣ ∃ 𝑟 ∈ ( R ‘ ( 1st ‘ 𝑥 ) ) 𝑦 = ( 𝑟 𝑎 ( 2nd ‘ 𝑥 ) ) } ∪ { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ ( 2nd ‘ 𝑥 ) ) 𝑧 = ( ( 1st ‘ 𝑥 ) 𝑎 𝑟 ) } ) ) ) ) |
| 2 |
1
|
norec2ov |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 +s 𝐵 ) = ( 〈 𝐴 , 𝐵 〉 ( 𝑥 ∈ V , 𝑎 ∈ V ↦ ( ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ ( 1st ‘ 𝑥 ) ) 𝑦 = ( 𝑙 𝑎 ( 2nd ‘ 𝑥 ) ) } ∪ { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ ( 2nd ‘ 𝑥 ) ) 𝑧 = ( ( 1st ‘ 𝑥 ) 𝑎 𝑙 ) } ) |s ( { 𝑦 ∣ ∃ 𝑟 ∈ ( R ‘ ( 1st ‘ 𝑥 ) ) 𝑦 = ( 𝑟 𝑎 ( 2nd ‘ 𝑥 ) ) } ∪ { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ ( 2nd ‘ 𝑥 ) ) 𝑧 = ( ( 1st ‘ 𝑥 ) 𝑎 𝑟 ) } ) ) ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) ) ) |
| 3 |
|
opex |
⊢ 〈 𝐴 , 𝐵 〉 ∈ V |
| 4 |
|
addsfn |
⊢ +s Fn ( No × No ) |
| 5 |
|
fnfun |
⊢ ( +s Fn ( No × No ) → Fun +s ) |
| 6 |
4 5
|
ax-mp |
⊢ Fun +s |
| 7 |
|
fvex |
⊢ ( L ‘ 𝐴 ) ∈ V |
| 8 |
|
fvex |
⊢ ( R ‘ 𝐴 ) ∈ V |
| 9 |
7 8
|
unex |
⊢ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∈ V |
| 10 |
|
snex |
⊢ { 𝐴 } ∈ V |
| 11 |
9 10
|
unex |
⊢ ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) ∈ V |
| 12 |
|
fvex |
⊢ ( L ‘ 𝐵 ) ∈ V |
| 13 |
|
fvex |
⊢ ( R ‘ 𝐵 ) ∈ V |
| 14 |
12 13
|
unex |
⊢ ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∈ V |
| 15 |
|
snex |
⊢ { 𝐵 } ∈ V |
| 16 |
14 15
|
unex |
⊢ ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ∈ V |
| 17 |
11 16
|
xpex |
⊢ ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∈ V |
| 18 |
17
|
difexi |
⊢ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ∈ V |
| 19 |
|
resfunexg |
⊢ ( ( Fun +s ∧ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ∈ V ) → ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) ∈ V ) |
| 20 |
6 18 19
|
mp2an |
⊢ ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) ∈ V |
| 21 |
|
2fveq3 |
⊢ ( 𝑥 = 〈 𝐴 , 𝐵 〉 → ( L ‘ ( 1st ‘ 𝑥 ) ) = ( L ‘ ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ) ) |
| 22 |
|
fveq2 |
⊢ ( 𝑥 = 〈 𝐴 , 𝐵 〉 → ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) |
| 23 |
22
|
oveq2d |
⊢ ( 𝑥 = 〈 𝐴 , 𝐵 〉 → ( 𝑙 𝑎 ( 2nd ‘ 𝑥 ) ) = ( 𝑙 𝑎 ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) ) |
| 24 |
23
|
eqeq2d |
⊢ ( 𝑥 = 〈 𝐴 , 𝐵 〉 → ( 𝑦 = ( 𝑙 𝑎 ( 2nd ‘ 𝑥 ) ) ↔ 𝑦 = ( 𝑙 𝑎 ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) ) ) |
| 25 |
21 24
|
rexeqbidv |
⊢ ( 𝑥 = 〈 𝐴 , 𝐵 〉 → ( ∃ 𝑙 ∈ ( L ‘ ( 1st ‘ 𝑥 ) ) 𝑦 = ( 𝑙 𝑎 ( 2nd ‘ 𝑥 ) ) ↔ ∃ 𝑙 ∈ ( L ‘ ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ) 𝑦 = ( 𝑙 𝑎 ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) ) ) |
| 26 |
25
|
abbidv |
⊢ ( 𝑥 = 〈 𝐴 , 𝐵 〉 → { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ ( 1st ‘ 𝑥 ) ) 𝑦 = ( 𝑙 𝑎 ( 2nd ‘ 𝑥 ) ) } = { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ) 𝑦 = ( 𝑙 𝑎 ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) } ) |
| 27 |
|
2fveq3 |
⊢ ( 𝑥 = 〈 𝐴 , 𝐵 〉 → ( L ‘ ( 2nd ‘ 𝑥 ) ) = ( L ‘ ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) ) |
| 28 |
|
fveq2 |
⊢ ( 𝑥 = 〈 𝐴 , 𝐵 〉 → ( 1st ‘ 𝑥 ) = ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ) |
| 29 |
28
|
oveq1d |
⊢ ( 𝑥 = 〈 𝐴 , 𝐵 〉 → ( ( 1st ‘ 𝑥 ) 𝑎 𝑙 ) = ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) 𝑎 𝑙 ) ) |
| 30 |
29
|
eqeq2d |
⊢ ( 𝑥 = 〈 𝐴 , 𝐵 〉 → ( 𝑧 = ( ( 1st ‘ 𝑥 ) 𝑎 𝑙 ) ↔ 𝑧 = ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) 𝑎 𝑙 ) ) ) |
| 31 |
27 30
|
rexeqbidv |
⊢ ( 𝑥 = 〈 𝐴 , 𝐵 〉 → ( ∃ 𝑙 ∈ ( L ‘ ( 2nd ‘ 𝑥 ) ) 𝑧 = ( ( 1st ‘ 𝑥 ) 𝑎 𝑙 ) ↔ ∃ 𝑙 ∈ ( L ‘ ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) 𝑧 = ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) 𝑎 𝑙 ) ) ) |
| 32 |
31
|
abbidv |
⊢ ( 𝑥 = 〈 𝐴 , 𝐵 〉 → { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ ( 2nd ‘ 𝑥 ) ) 𝑧 = ( ( 1st ‘ 𝑥 ) 𝑎 𝑙 ) } = { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) 𝑧 = ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) 𝑎 𝑙 ) } ) |
| 33 |
26 32
|
uneq12d |
⊢ ( 𝑥 = 〈 𝐴 , 𝐵 〉 → ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ ( 1st ‘ 𝑥 ) ) 𝑦 = ( 𝑙 𝑎 ( 2nd ‘ 𝑥 ) ) } ∪ { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ ( 2nd ‘ 𝑥 ) ) 𝑧 = ( ( 1st ‘ 𝑥 ) 𝑎 𝑙 ) } ) = ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ) 𝑦 = ( 𝑙 𝑎 ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) } ∪ { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) 𝑧 = ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) 𝑎 𝑙 ) } ) ) |
| 34 |
|
2fveq3 |
⊢ ( 𝑥 = 〈 𝐴 , 𝐵 〉 → ( R ‘ ( 1st ‘ 𝑥 ) ) = ( R ‘ ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ) ) |
| 35 |
22
|
oveq2d |
⊢ ( 𝑥 = 〈 𝐴 , 𝐵 〉 → ( 𝑟 𝑎 ( 2nd ‘ 𝑥 ) ) = ( 𝑟 𝑎 ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) ) |
| 36 |
35
|
eqeq2d |
⊢ ( 𝑥 = 〈 𝐴 , 𝐵 〉 → ( 𝑦 = ( 𝑟 𝑎 ( 2nd ‘ 𝑥 ) ) ↔ 𝑦 = ( 𝑟 𝑎 ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) ) ) |
| 37 |
34 36
|
rexeqbidv |
⊢ ( 𝑥 = 〈 𝐴 , 𝐵 〉 → ( ∃ 𝑟 ∈ ( R ‘ ( 1st ‘ 𝑥 ) ) 𝑦 = ( 𝑟 𝑎 ( 2nd ‘ 𝑥 ) ) ↔ ∃ 𝑟 ∈ ( R ‘ ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ) 𝑦 = ( 𝑟 𝑎 ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) ) ) |
| 38 |
37
|
abbidv |
⊢ ( 𝑥 = 〈 𝐴 , 𝐵 〉 → { 𝑦 ∣ ∃ 𝑟 ∈ ( R ‘ ( 1st ‘ 𝑥 ) ) 𝑦 = ( 𝑟 𝑎 ( 2nd ‘ 𝑥 ) ) } = { 𝑦 ∣ ∃ 𝑟 ∈ ( R ‘ ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ) 𝑦 = ( 𝑟 𝑎 ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) } ) |
| 39 |
|
2fveq3 |
⊢ ( 𝑥 = 〈 𝐴 , 𝐵 〉 → ( R ‘ ( 2nd ‘ 𝑥 ) ) = ( R ‘ ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) ) |
| 40 |
28
|
oveq1d |
⊢ ( 𝑥 = 〈 𝐴 , 𝐵 〉 → ( ( 1st ‘ 𝑥 ) 𝑎 𝑟 ) = ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) 𝑎 𝑟 ) ) |
| 41 |
40
|
eqeq2d |
⊢ ( 𝑥 = 〈 𝐴 , 𝐵 〉 → ( 𝑧 = ( ( 1st ‘ 𝑥 ) 𝑎 𝑟 ) ↔ 𝑧 = ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) 𝑎 𝑟 ) ) ) |
| 42 |
39 41
|
rexeqbidv |
⊢ ( 𝑥 = 〈 𝐴 , 𝐵 〉 → ( ∃ 𝑟 ∈ ( R ‘ ( 2nd ‘ 𝑥 ) ) 𝑧 = ( ( 1st ‘ 𝑥 ) 𝑎 𝑟 ) ↔ ∃ 𝑟 ∈ ( R ‘ ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) 𝑧 = ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) 𝑎 𝑟 ) ) ) |
| 43 |
42
|
abbidv |
⊢ ( 𝑥 = 〈 𝐴 , 𝐵 〉 → { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ ( 2nd ‘ 𝑥 ) ) 𝑧 = ( ( 1st ‘ 𝑥 ) 𝑎 𝑟 ) } = { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) 𝑧 = ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) 𝑎 𝑟 ) } ) |
| 44 |
38 43
|
uneq12d |
⊢ ( 𝑥 = 〈 𝐴 , 𝐵 〉 → ( { 𝑦 ∣ ∃ 𝑟 ∈ ( R ‘ ( 1st ‘ 𝑥 ) ) 𝑦 = ( 𝑟 𝑎 ( 2nd ‘ 𝑥 ) ) } ∪ { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ ( 2nd ‘ 𝑥 ) ) 𝑧 = ( ( 1st ‘ 𝑥 ) 𝑎 𝑟 ) } ) = ( { 𝑦 ∣ ∃ 𝑟 ∈ ( R ‘ ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ) 𝑦 = ( 𝑟 𝑎 ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) } ∪ { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) 𝑧 = ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) 𝑎 𝑟 ) } ) ) |
| 45 |
33 44
|
oveq12d |
⊢ ( 𝑥 = 〈 𝐴 , 𝐵 〉 → ( ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ ( 1st ‘ 𝑥 ) ) 𝑦 = ( 𝑙 𝑎 ( 2nd ‘ 𝑥 ) ) } ∪ { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ ( 2nd ‘ 𝑥 ) ) 𝑧 = ( ( 1st ‘ 𝑥 ) 𝑎 𝑙 ) } ) |s ( { 𝑦 ∣ ∃ 𝑟 ∈ ( R ‘ ( 1st ‘ 𝑥 ) ) 𝑦 = ( 𝑟 𝑎 ( 2nd ‘ 𝑥 ) ) } ∪ { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ ( 2nd ‘ 𝑥 ) ) 𝑧 = ( ( 1st ‘ 𝑥 ) 𝑎 𝑟 ) } ) ) = ( ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ) 𝑦 = ( 𝑙 𝑎 ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) } ∪ { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) 𝑧 = ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) 𝑎 𝑙 ) } ) |s ( { 𝑦 ∣ ∃ 𝑟 ∈ ( R ‘ ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ) 𝑦 = ( 𝑟 𝑎 ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) } ∪ { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) 𝑧 = ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) 𝑎 𝑟 ) } ) ) ) |
| 46 |
|
oveq |
⊢ ( 𝑎 = ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) → ( 𝑙 𝑎 ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) = ( 𝑙 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) ) |
| 47 |
46
|
eqeq2d |
⊢ ( 𝑎 = ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) → ( 𝑦 = ( 𝑙 𝑎 ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) ↔ 𝑦 = ( 𝑙 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) ) ) |
| 48 |
47
|
rexbidv |
⊢ ( 𝑎 = ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) → ( ∃ 𝑙 ∈ ( L ‘ ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ) 𝑦 = ( 𝑙 𝑎 ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) ↔ ∃ 𝑙 ∈ ( L ‘ ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ) 𝑦 = ( 𝑙 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) ) ) |
| 49 |
48
|
abbidv |
⊢ ( 𝑎 = ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) → { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ) 𝑦 = ( 𝑙 𝑎 ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) } = { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ) 𝑦 = ( 𝑙 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) } ) |
| 50 |
|
oveq |
⊢ ( 𝑎 = ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) → ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) 𝑎 𝑙 ) = ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) 𝑙 ) ) |
| 51 |
50
|
eqeq2d |
⊢ ( 𝑎 = ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) → ( 𝑧 = ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) 𝑎 𝑙 ) ↔ 𝑧 = ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) 𝑙 ) ) ) |
| 52 |
51
|
rexbidv |
⊢ ( 𝑎 = ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) → ( ∃ 𝑙 ∈ ( L ‘ ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) 𝑧 = ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) 𝑎 𝑙 ) ↔ ∃ 𝑙 ∈ ( L ‘ ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) 𝑧 = ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) 𝑙 ) ) ) |
| 53 |
52
|
abbidv |
⊢ ( 𝑎 = ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) → { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) 𝑧 = ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) 𝑎 𝑙 ) } = { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) 𝑧 = ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) 𝑙 ) } ) |
| 54 |
49 53
|
uneq12d |
⊢ ( 𝑎 = ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) → ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ) 𝑦 = ( 𝑙 𝑎 ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) } ∪ { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) 𝑧 = ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) 𝑎 𝑙 ) } ) = ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ) 𝑦 = ( 𝑙 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) } ∪ { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) 𝑧 = ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) 𝑙 ) } ) ) |
| 55 |
|
oveq |
⊢ ( 𝑎 = ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) → ( 𝑟 𝑎 ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) = ( 𝑟 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) ) |
| 56 |
55
|
eqeq2d |
⊢ ( 𝑎 = ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) → ( 𝑦 = ( 𝑟 𝑎 ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) ↔ 𝑦 = ( 𝑟 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) ) ) |
| 57 |
56
|
rexbidv |
⊢ ( 𝑎 = ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) → ( ∃ 𝑟 ∈ ( R ‘ ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ) 𝑦 = ( 𝑟 𝑎 ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) ↔ ∃ 𝑟 ∈ ( R ‘ ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ) 𝑦 = ( 𝑟 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) ) ) |
| 58 |
57
|
abbidv |
⊢ ( 𝑎 = ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) → { 𝑦 ∣ ∃ 𝑟 ∈ ( R ‘ ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ) 𝑦 = ( 𝑟 𝑎 ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) } = { 𝑦 ∣ ∃ 𝑟 ∈ ( R ‘ ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ) 𝑦 = ( 𝑟 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) } ) |
| 59 |
|
oveq |
⊢ ( 𝑎 = ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) → ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) 𝑎 𝑟 ) = ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) 𝑟 ) ) |
| 60 |
59
|
eqeq2d |
⊢ ( 𝑎 = ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) → ( 𝑧 = ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) 𝑎 𝑟 ) ↔ 𝑧 = ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) 𝑟 ) ) ) |
| 61 |
60
|
rexbidv |
⊢ ( 𝑎 = ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) → ( ∃ 𝑟 ∈ ( R ‘ ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) 𝑧 = ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) 𝑎 𝑟 ) ↔ ∃ 𝑟 ∈ ( R ‘ ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) 𝑧 = ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) 𝑟 ) ) ) |
| 62 |
61
|
abbidv |
⊢ ( 𝑎 = ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) → { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) 𝑧 = ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) 𝑎 𝑟 ) } = { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) 𝑧 = ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) 𝑟 ) } ) |
| 63 |
58 62
|
uneq12d |
⊢ ( 𝑎 = ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) → ( { 𝑦 ∣ ∃ 𝑟 ∈ ( R ‘ ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ) 𝑦 = ( 𝑟 𝑎 ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) } ∪ { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) 𝑧 = ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) 𝑎 𝑟 ) } ) = ( { 𝑦 ∣ ∃ 𝑟 ∈ ( R ‘ ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ) 𝑦 = ( 𝑟 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) } ∪ { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) 𝑧 = ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) 𝑟 ) } ) ) |
| 64 |
54 63
|
oveq12d |
⊢ ( 𝑎 = ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) → ( ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ) 𝑦 = ( 𝑙 𝑎 ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) } ∪ { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) 𝑧 = ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) 𝑎 𝑙 ) } ) |s ( { 𝑦 ∣ ∃ 𝑟 ∈ ( R ‘ ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ) 𝑦 = ( 𝑟 𝑎 ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) } ∪ { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) 𝑧 = ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) 𝑎 𝑟 ) } ) ) = ( ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ) 𝑦 = ( 𝑙 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) } ∪ { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) 𝑧 = ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) 𝑙 ) } ) |s ( { 𝑦 ∣ ∃ 𝑟 ∈ ( R ‘ ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ) 𝑦 = ( 𝑟 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) } ∪ { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) 𝑧 = ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) 𝑟 ) } ) ) ) |
| 65 |
|
eqid |
⊢ ( 𝑥 ∈ V , 𝑎 ∈ V ↦ ( ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ ( 1st ‘ 𝑥 ) ) 𝑦 = ( 𝑙 𝑎 ( 2nd ‘ 𝑥 ) ) } ∪ { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ ( 2nd ‘ 𝑥 ) ) 𝑧 = ( ( 1st ‘ 𝑥 ) 𝑎 𝑙 ) } ) |s ( { 𝑦 ∣ ∃ 𝑟 ∈ ( R ‘ ( 1st ‘ 𝑥 ) ) 𝑦 = ( 𝑟 𝑎 ( 2nd ‘ 𝑥 ) ) } ∪ { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ ( 2nd ‘ 𝑥 ) ) 𝑧 = ( ( 1st ‘ 𝑥 ) 𝑎 𝑟 ) } ) ) ) = ( 𝑥 ∈ V , 𝑎 ∈ V ↦ ( ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ ( 1st ‘ 𝑥 ) ) 𝑦 = ( 𝑙 𝑎 ( 2nd ‘ 𝑥 ) ) } ∪ { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ ( 2nd ‘ 𝑥 ) ) 𝑧 = ( ( 1st ‘ 𝑥 ) 𝑎 𝑙 ) } ) |s ( { 𝑦 ∣ ∃ 𝑟 ∈ ( R ‘ ( 1st ‘ 𝑥 ) ) 𝑦 = ( 𝑟 𝑎 ( 2nd ‘ 𝑥 ) ) } ∪ { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ ( 2nd ‘ 𝑥 ) ) 𝑧 = ( ( 1st ‘ 𝑥 ) 𝑎 𝑟 ) } ) ) ) |
| 66 |
|
ovex |
⊢ ( ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ) 𝑦 = ( 𝑙 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) } ∪ { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) 𝑧 = ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) 𝑙 ) } ) |s ( { 𝑦 ∣ ∃ 𝑟 ∈ ( R ‘ ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ) 𝑦 = ( 𝑟 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) } ∪ { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) 𝑧 = ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) 𝑟 ) } ) ) ∈ V |
| 67 |
45 64 65 66
|
ovmpo |
⊢ ( ( 〈 𝐴 , 𝐵 〉 ∈ V ∧ ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) ∈ V ) → ( 〈 𝐴 , 𝐵 〉 ( 𝑥 ∈ V , 𝑎 ∈ V ↦ ( ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ ( 1st ‘ 𝑥 ) ) 𝑦 = ( 𝑙 𝑎 ( 2nd ‘ 𝑥 ) ) } ∪ { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ ( 2nd ‘ 𝑥 ) ) 𝑧 = ( ( 1st ‘ 𝑥 ) 𝑎 𝑙 ) } ) |s ( { 𝑦 ∣ ∃ 𝑟 ∈ ( R ‘ ( 1st ‘ 𝑥 ) ) 𝑦 = ( 𝑟 𝑎 ( 2nd ‘ 𝑥 ) ) } ∪ { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ ( 2nd ‘ 𝑥 ) ) 𝑧 = ( ( 1st ‘ 𝑥 ) 𝑎 𝑟 ) } ) ) ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) ) = ( ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ) 𝑦 = ( 𝑙 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) } ∪ { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) 𝑧 = ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) 𝑙 ) } ) |s ( { 𝑦 ∣ ∃ 𝑟 ∈ ( R ‘ ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ) 𝑦 = ( 𝑟 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) } ∪ { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) 𝑧 = ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) 𝑟 ) } ) ) ) |
| 68 |
3 20 67
|
mp2an |
⊢ ( 〈 𝐴 , 𝐵 〉 ( 𝑥 ∈ V , 𝑎 ∈ V ↦ ( ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ ( 1st ‘ 𝑥 ) ) 𝑦 = ( 𝑙 𝑎 ( 2nd ‘ 𝑥 ) ) } ∪ { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ ( 2nd ‘ 𝑥 ) ) 𝑧 = ( ( 1st ‘ 𝑥 ) 𝑎 𝑙 ) } ) |s ( { 𝑦 ∣ ∃ 𝑟 ∈ ( R ‘ ( 1st ‘ 𝑥 ) ) 𝑦 = ( 𝑟 𝑎 ( 2nd ‘ 𝑥 ) ) } ∪ { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ ( 2nd ‘ 𝑥 ) ) 𝑧 = ( ( 1st ‘ 𝑥 ) 𝑎 𝑟 ) } ) ) ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) ) = ( ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ) 𝑦 = ( 𝑙 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) } ∪ { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) 𝑧 = ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) 𝑙 ) } ) |s ( { 𝑦 ∣ ∃ 𝑟 ∈ ( R ‘ ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ) 𝑦 = ( 𝑟 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) } ∪ { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) 𝑧 = ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) 𝑟 ) } ) ) |
| 69 |
|
op1stg |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐴 ) |
| 70 |
69
|
fveq2d |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( L ‘ ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ) = ( L ‘ 𝐴 ) ) |
| 71 |
70
|
eleq2d |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝑙 ∈ ( L ‘ ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ) ↔ 𝑙 ∈ ( L ‘ 𝐴 ) ) ) |
| 72 |
|
op2ndg |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐵 ) |
| 73 |
72
|
adantr |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑙 ∈ ( L ‘ 𝐴 ) ) → ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐵 ) |
| 74 |
73
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑙 ∈ ( L ‘ 𝐴 ) ) → ( 𝑙 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) = ( 𝑙 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) 𝐵 ) ) |
| 75 |
|
elun1 |
⊢ ( 𝑙 ∈ ( L ‘ 𝐴 ) → 𝑙 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ) |
| 76 |
|
elun1 |
⊢ ( 𝑙 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) → 𝑙 ∈ ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) ) |
| 77 |
75 76
|
syl |
⊢ ( 𝑙 ∈ ( L ‘ 𝐴 ) → 𝑙 ∈ ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) ) |
| 78 |
77
|
adantl |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑙 ∈ ( L ‘ 𝐴 ) ) → 𝑙 ∈ ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) ) |
| 79 |
|
snidg |
⊢ ( 𝐵 ∈ No → 𝐵 ∈ { 𝐵 } ) |
| 80 |
|
elun2 |
⊢ ( 𝐵 ∈ { 𝐵 } → 𝐵 ∈ ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) |
| 81 |
79 80
|
syl |
⊢ ( 𝐵 ∈ No → 𝐵 ∈ ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) |
| 82 |
81
|
adantl |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → 𝐵 ∈ ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) |
| 83 |
82
|
adantr |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑙 ∈ ( L ‘ 𝐴 ) ) → 𝐵 ∈ ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) |
| 84 |
78 83
|
opelxpd |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑙 ∈ ( L ‘ 𝐴 ) ) → 〈 𝑙 , 𝐵 〉 ∈ ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ) |
| 85 |
|
leftirr |
⊢ ¬ 𝐴 ∈ ( L ‘ 𝐴 ) |
| 86 |
85
|
a1i |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ¬ 𝐴 ∈ ( L ‘ 𝐴 ) ) |
| 87 |
|
eleq1 |
⊢ ( 𝑙 = 𝐴 → ( 𝑙 ∈ ( L ‘ 𝐴 ) ↔ 𝐴 ∈ ( L ‘ 𝐴 ) ) ) |
| 88 |
87
|
notbid |
⊢ ( 𝑙 = 𝐴 → ( ¬ 𝑙 ∈ ( L ‘ 𝐴 ) ↔ ¬ 𝐴 ∈ ( L ‘ 𝐴 ) ) ) |
| 89 |
86 88
|
syl5ibrcom |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝑙 = 𝐴 → ¬ 𝑙 ∈ ( L ‘ 𝐴 ) ) ) |
| 90 |
89
|
necon2ad |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝑙 ∈ ( L ‘ 𝐴 ) → 𝑙 ≠ 𝐴 ) ) |
| 91 |
90
|
imp |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑙 ∈ ( L ‘ 𝐴 ) ) → 𝑙 ≠ 𝐴 ) |
| 92 |
91
|
orcd |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑙 ∈ ( L ‘ 𝐴 ) ) → ( 𝑙 ≠ 𝐴 ∨ 𝐵 ≠ 𝐵 ) ) |
| 93 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑙 ∈ ( L ‘ 𝐴 ) ) → 𝑙 ∈ ( L ‘ 𝐴 ) ) |
| 94 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑙 ∈ ( L ‘ 𝐴 ) ) → 𝐵 ∈ No ) |
| 95 |
|
opthneg |
⊢ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝐵 ∈ No ) → ( 〈 𝑙 , 𝐵 〉 ≠ 〈 𝐴 , 𝐵 〉 ↔ ( 𝑙 ≠ 𝐴 ∨ 𝐵 ≠ 𝐵 ) ) ) |
| 96 |
93 94 95
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑙 ∈ ( L ‘ 𝐴 ) ) → ( 〈 𝑙 , 𝐵 〉 ≠ 〈 𝐴 , 𝐵 〉 ↔ ( 𝑙 ≠ 𝐴 ∨ 𝐵 ≠ 𝐵 ) ) ) |
| 97 |
92 96
|
mpbird |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑙 ∈ ( L ‘ 𝐴 ) ) → 〈 𝑙 , 𝐵 〉 ≠ 〈 𝐴 , 𝐵 〉 ) |
| 98 |
|
eldifsn |
⊢ ( 〈 𝑙 , 𝐵 〉 ∈ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ↔ ( 〈 𝑙 , 𝐵 〉 ∈ ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∧ 〈 𝑙 , 𝐵 〉 ≠ 〈 𝐴 , 𝐵 〉 ) ) |
| 99 |
84 97 98
|
sylanbrc |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑙 ∈ ( L ‘ 𝐴 ) ) → 〈 𝑙 , 𝐵 〉 ∈ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) |
| 100 |
99
|
fvresd |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑙 ∈ ( L ‘ 𝐴 ) ) → ( ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) ‘ 〈 𝑙 , 𝐵 〉 ) = ( +s ‘ 〈 𝑙 , 𝐵 〉 ) ) |
| 101 |
|
df-ov |
⊢ ( 𝑙 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) 𝐵 ) = ( ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) ‘ 〈 𝑙 , 𝐵 〉 ) |
| 102 |
|
df-ov |
⊢ ( 𝑙 +s 𝐵 ) = ( +s ‘ 〈 𝑙 , 𝐵 〉 ) |
| 103 |
100 101 102
|
3eqtr4g |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑙 ∈ ( L ‘ 𝐴 ) ) → ( 𝑙 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) 𝐵 ) = ( 𝑙 +s 𝐵 ) ) |
| 104 |
74 103
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑙 ∈ ( L ‘ 𝐴 ) ) → ( 𝑙 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) = ( 𝑙 +s 𝐵 ) ) |
| 105 |
104
|
eqeq2d |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑙 ∈ ( L ‘ 𝐴 ) ) → ( 𝑦 = ( 𝑙 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) ↔ 𝑦 = ( 𝑙 +s 𝐵 ) ) ) |
| 106 |
71 105
|
sylbida |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑙 ∈ ( L ‘ ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ) ) → ( 𝑦 = ( 𝑙 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) ↔ 𝑦 = ( 𝑙 +s 𝐵 ) ) ) |
| 107 |
70 106
|
rexeqbidva |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ∃ 𝑙 ∈ ( L ‘ ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ) 𝑦 = ( 𝑙 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) ↔ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑦 = ( 𝑙 +s 𝐵 ) ) ) |
| 108 |
107
|
abbidv |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ) 𝑦 = ( 𝑙 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) } = { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑦 = ( 𝑙 +s 𝐵 ) } ) |
| 109 |
72
|
fveq2d |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( L ‘ ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) = ( L ‘ 𝐵 ) ) |
| 110 |
109
|
eleq2d |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝑙 ∈ ( L ‘ ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) ↔ 𝑙 ∈ ( L ‘ 𝐵 ) ) ) |
| 111 |
69
|
adantr |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑙 ∈ ( L ‘ 𝐵 ) ) → ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐴 ) |
| 112 |
111
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑙 ∈ ( L ‘ 𝐵 ) ) → ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) 𝑙 ) = ( 𝐴 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) 𝑙 ) ) |
| 113 |
|
snidg |
⊢ ( 𝐴 ∈ No → 𝐴 ∈ { 𝐴 } ) |
| 114 |
113
|
adantr |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → 𝐴 ∈ { 𝐴 } ) |
| 115 |
|
elun2 |
⊢ ( 𝐴 ∈ { 𝐴 } → 𝐴 ∈ ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) ) |
| 116 |
114 115
|
syl |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → 𝐴 ∈ ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) ) |
| 117 |
116
|
adantr |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑙 ∈ ( L ‘ 𝐵 ) ) → 𝐴 ∈ ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) ) |
| 118 |
|
elun1 |
⊢ ( 𝑙 ∈ ( L ‘ 𝐵 ) → 𝑙 ∈ ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ) |
| 119 |
|
elun1 |
⊢ ( 𝑙 ∈ ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) → 𝑙 ∈ ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) |
| 120 |
118 119
|
syl |
⊢ ( 𝑙 ∈ ( L ‘ 𝐵 ) → 𝑙 ∈ ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) |
| 121 |
120
|
adantl |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑙 ∈ ( L ‘ 𝐵 ) ) → 𝑙 ∈ ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) |
| 122 |
117 121
|
opelxpd |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑙 ∈ ( L ‘ 𝐵 ) ) → 〈 𝐴 , 𝑙 〉 ∈ ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ) |
| 123 |
|
leftirr |
⊢ ¬ 𝐵 ∈ ( L ‘ 𝐵 ) |
| 124 |
123
|
a1i |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ¬ 𝐵 ∈ ( L ‘ 𝐵 ) ) |
| 125 |
|
eleq1 |
⊢ ( 𝑙 = 𝐵 → ( 𝑙 ∈ ( L ‘ 𝐵 ) ↔ 𝐵 ∈ ( L ‘ 𝐵 ) ) ) |
| 126 |
125
|
notbid |
⊢ ( 𝑙 = 𝐵 → ( ¬ 𝑙 ∈ ( L ‘ 𝐵 ) ↔ ¬ 𝐵 ∈ ( L ‘ 𝐵 ) ) ) |
| 127 |
124 126
|
syl5ibrcom |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝑙 = 𝐵 → ¬ 𝑙 ∈ ( L ‘ 𝐵 ) ) ) |
| 128 |
127
|
necon2ad |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝑙 ∈ ( L ‘ 𝐵 ) → 𝑙 ≠ 𝐵 ) ) |
| 129 |
128
|
imp |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑙 ∈ ( L ‘ 𝐵 ) ) → 𝑙 ≠ 𝐵 ) |
| 130 |
129
|
olcd |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑙 ∈ ( L ‘ 𝐵 ) ) → ( 𝐴 ≠ 𝐴 ∨ 𝑙 ≠ 𝐵 ) ) |
| 131 |
|
opthneg |
⊢ ( ( 𝐴 ∈ No ∧ 𝑙 ∈ ( L ‘ 𝐵 ) ) → ( 〈 𝐴 , 𝑙 〉 ≠ 〈 𝐴 , 𝐵 〉 ↔ ( 𝐴 ≠ 𝐴 ∨ 𝑙 ≠ 𝐵 ) ) ) |
| 132 |
131
|
adantlr |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑙 ∈ ( L ‘ 𝐵 ) ) → ( 〈 𝐴 , 𝑙 〉 ≠ 〈 𝐴 , 𝐵 〉 ↔ ( 𝐴 ≠ 𝐴 ∨ 𝑙 ≠ 𝐵 ) ) ) |
| 133 |
130 132
|
mpbird |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑙 ∈ ( L ‘ 𝐵 ) ) → 〈 𝐴 , 𝑙 〉 ≠ 〈 𝐴 , 𝐵 〉 ) |
| 134 |
|
eldifsn |
⊢ ( 〈 𝐴 , 𝑙 〉 ∈ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ↔ ( 〈 𝐴 , 𝑙 〉 ∈ ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∧ 〈 𝐴 , 𝑙 〉 ≠ 〈 𝐴 , 𝐵 〉 ) ) |
| 135 |
122 133 134
|
sylanbrc |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑙 ∈ ( L ‘ 𝐵 ) ) → 〈 𝐴 , 𝑙 〉 ∈ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) |
| 136 |
135
|
fvresd |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑙 ∈ ( L ‘ 𝐵 ) ) → ( ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) ‘ 〈 𝐴 , 𝑙 〉 ) = ( +s ‘ 〈 𝐴 , 𝑙 〉 ) ) |
| 137 |
|
df-ov |
⊢ ( 𝐴 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) 𝑙 ) = ( ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) ‘ 〈 𝐴 , 𝑙 〉 ) |
| 138 |
|
df-ov |
⊢ ( 𝐴 +s 𝑙 ) = ( +s ‘ 〈 𝐴 , 𝑙 〉 ) |
| 139 |
136 137 138
|
3eqtr4g |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑙 ∈ ( L ‘ 𝐵 ) ) → ( 𝐴 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) 𝑙 ) = ( 𝐴 +s 𝑙 ) ) |
| 140 |
112 139
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑙 ∈ ( L ‘ 𝐵 ) ) → ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) 𝑙 ) = ( 𝐴 +s 𝑙 ) ) |
| 141 |
140
|
eqeq2d |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑙 ∈ ( L ‘ 𝐵 ) ) → ( 𝑧 = ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) 𝑙 ) ↔ 𝑧 = ( 𝐴 +s 𝑙 ) ) ) |
| 142 |
110 141
|
sylbida |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑙 ∈ ( L ‘ ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) ) → ( 𝑧 = ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) 𝑙 ) ↔ 𝑧 = ( 𝐴 +s 𝑙 ) ) ) |
| 143 |
109 142
|
rexeqbidva |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ∃ 𝑙 ∈ ( L ‘ ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) 𝑧 = ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) 𝑙 ) ↔ ∃ 𝑙 ∈ ( L ‘ 𝐵 ) 𝑧 = ( 𝐴 +s 𝑙 ) ) ) |
| 144 |
143
|
abbidv |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) 𝑧 = ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) 𝑙 ) } = { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐵 ) 𝑧 = ( 𝐴 +s 𝑙 ) } ) |
| 145 |
108 144
|
uneq12d |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ) 𝑦 = ( 𝑙 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) } ∪ { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) 𝑧 = ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) 𝑙 ) } ) = ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐵 ) 𝑧 = ( 𝐴 +s 𝑙 ) } ) ) |
| 146 |
69
|
fveq2d |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( R ‘ ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ) = ( R ‘ 𝐴 ) ) |
| 147 |
146
|
eleq2d |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝑟 ∈ ( R ‘ ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ) ↔ 𝑟 ∈ ( R ‘ 𝐴 ) ) ) |
| 148 |
72
|
adantr |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑟 ∈ ( R ‘ 𝐴 ) ) → ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐵 ) |
| 149 |
148
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑟 ∈ ( R ‘ 𝐴 ) ) → ( 𝑟 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) = ( 𝑟 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) 𝐵 ) ) |
| 150 |
|
elun2 |
⊢ ( 𝑟 ∈ ( R ‘ 𝐴 ) → 𝑟 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ) |
| 151 |
|
elun1 |
⊢ ( 𝑟 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) → 𝑟 ∈ ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) ) |
| 152 |
150 151
|
syl |
⊢ ( 𝑟 ∈ ( R ‘ 𝐴 ) → 𝑟 ∈ ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) ) |
| 153 |
152
|
adantl |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑟 ∈ ( R ‘ 𝐴 ) ) → 𝑟 ∈ ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) ) |
| 154 |
82
|
adantr |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑟 ∈ ( R ‘ 𝐴 ) ) → 𝐵 ∈ ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) |
| 155 |
153 154
|
opelxpd |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑟 ∈ ( R ‘ 𝐴 ) ) → 〈 𝑟 , 𝐵 〉 ∈ ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ) |
| 156 |
|
rightirr |
⊢ ¬ 𝐴 ∈ ( R ‘ 𝐴 ) |
| 157 |
156
|
a1i |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ¬ 𝐴 ∈ ( R ‘ 𝐴 ) ) |
| 158 |
|
eleq1 |
⊢ ( 𝑟 = 𝐴 → ( 𝑟 ∈ ( R ‘ 𝐴 ) ↔ 𝐴 ∈ ( R ‘ 𝐴 ) ) ) |
| 159 |
158
|
notbid |
⊢ ( 𝑟 = 𝐴 → ( ¬ 𝑟 ∈ ( R ‘ 𝐴 ) ↔ ¬ 𝐴 ∈ ( R ‘ 𝐴 ) ) ) |
| 160 |
157 159
|
syl5ibrcom |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝑟 = 𝐴 → ¬ 𝑟 ∈ ( R ‘ 𝐴 ) ) ) |
| 161 |
160
|
necon2ad |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝑟 ∈ ( R ‘ 𝐴 ) → 𝑟 ≠ 𝐴 ) ) |
| 162 |
161
|
imp |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑟 ∈ ( R ‘ 𝐴 ) ) → 𝑟 ≠ 𝐴 ) |
| 163 |
162
|
orcd |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑟 ∈ ( R ‘ 𝐴 ) ) → ( 𝑟 ≠ 𝐴 ∨ 𝐵 ≠ 𝐵 ) ) |
| 164 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑟 ∈ ( R ‘ 𝐴 ) ) → 𝑟 ∈ ( R ‘ 𝐴 ) ) |
| 165 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑟 ∈ ( R ‘ 𝐴 ) ) → 𝐵 ∈ No ) |
| 166 |
|
opthneg |
⊢ ( ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝐵 ∈ No ) → ( 〈 𝑟 , 𝐵 〉 ≠ 〈 𝐴 , 𝐵 〉 ↔ ( 𝑟 ≠ 𝐴 ∨ 𝐵 ≠ 𝐵 ) ) ) |
| 167 |
164 165 166
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑟 ∈ ( R ‘ 𝐴 ) ) → ( 〈 𝑟 , 𝐵 〉 ≠ 〈 𝐴 , 𝐵 〉 ↔ ( 𝑟 ≠ 𝐴 ∨ 𝐵 ≠ 𝐵 ) ) ) |
| 168 |
163 167
|
mpbird |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑟 ∈ ( R ‘ 𝐴 ) ) → 〈 𝑟 , 𝐵 〉 ≠ 〈 𝐴 , 𝐵 〉 ) |
| 169 |
|
eldifsn |
⊢ ( 〈 𝑟 , 𝐵 〉 ∈ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ↔ ( 〈 𝑟 , 𝐵 〉 ∈ ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∧ 〈 𝑟 , 𝐵 〉 ≠ 〈 𝐴 , 𝐵 〉 ) ) |
| 170 |
155 168 169
|
sylanbrc |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑟 ∈ ( R ‘ 𝐴 ) ) → 〈 𝑟 , 𝐵 〉 ∈ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) |
| 171 |
170
|
fvresd |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑟 ∈ ( R ‘ 𝐴 ) ) → ( ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) ‘ 〈 𝑟 , 𝐵 〉 ) = ( +s ‘ 〈 𝑟 , 𝐵 〉 ) ) |
| 172 |
|
df-ov |
⊢ ( 𝑟 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) 𝐵 ) = ( ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) ‘ 〈 𝑟 , 𝐵 〉 ) |
| 173 |
|
df-ov |
⊢ ( 𝑟 +s 𝐵 ) = ( +s ‘ 〈 𝑟 , 𝐵 〉 ) |
| 174 |
171 172 173
|
3eqtr4g |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑟 ∈ ( R ‘ 𝐴 ) ) → ( 𝑟 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) 𝐵 ) = ( 𝑟 +s 𝐵 ) ) |
| 175 |
149 174
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑟 ∈ ( R ‘ 𝐴 ) ) → ( 𝑟 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) = ( 𝑟 +s 𝐵 ) ) |
| 176 |
175
|
eqeq2d |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑟 ∈ ( R ‘ 𝐴 ) ) → ( 𝑦 = ( 𝑟 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) ↔ 𝑦 = ( 𝑟 +s 𝐵 ) ) ) |
| 177 |
147 176
|
sylbida |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑟 ∈ ( R ‘ ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ) ) → ( 𝑦 = ( 𝑟 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) ↔ 𝑦 = ( 𝑟 +s 𝐵 ) ) ) |
| 178 |
146 177
|
rexeqbidva |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ∃ 𝑟 ∈ ( R ‘ ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ) 𝑦 = ( 𝑟 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) ↔ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) 𝑦 = ( 𝑟 +s 𝐵 ) ) ) |
| 179 |
178
|
abbidv |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → { 𝑦 ∣ ∃ 𝑟 ∈ ( R ‘ ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ) 𝑦 = ( 𝑟 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) } = { 𝑦 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) 𝑦 = ( 𝑟 +s 𝐵 ) } ) |
| 180 |
72
|
fveq2d |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( R ‘ ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) = ( R ‘ 𝐵 ) ) |
| 181 |
180
|
eleq2d |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝑟 ∈ ( R ‘ ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) ↔ 𝑟 ∈ ( R ‘ 𝐵 ) ) ) |
| 182 |
69
|
adantr |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑟 ∈ ( R ‘ 𝐵 ) ) → ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐴 ) |
| 183 |
182
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑟 ∈ ( R ‘ 𝐵 ) ) → ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) 𝑟 ) = ( 𝐴 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) 𝑟 ) ) |
| 184 |
114
|
adantr |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑟 ∈ ( R ‘ 𝐵 ) ) → 𝐴 ∈ { 𝐴 } ) |
| 185 |
184 115
|
syl |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑟 ∈ ( R ‘ 𝐵 ) ) → 𝐴 ∈ ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) ) |
| 186 |
|
elun2 |
⊢ ( 𝑟 ∈ ( R ‘ 𝐵 ) → 𝑟 ∈ ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ) |
| 187 |
186
|
adantl |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑟 ∈ ( R ‘ 𝐵 ) ) → 𝑟 ∈ ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ) |
| 188 |
|
elun1 |
⊢ ( 𝑟 ∈ ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) → 𝑟 ∈ ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) |
| 189 |
187 188
|
syl |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑟 ∈ ( R ‘ 𝐵 ) ) → 𝑟 ∈ ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) |
| 190 |
185 189
|
opelxpd |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑟 ∈ ( R ‘ 𝐵 ) ) → 〈 𝐴 , 𝑟 〉 ∈ ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ) |
| 191 |
|
rightirr |
⊢ ¬ 𝐵 ∈ ( R ‘ 𝐵 ) |
| 192 |
191
|
a1i |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ¬ 𝐵 ∈ ( R ‘ 𝐵 ) ) |
| 193 |
|
eleq1 |
⊢ ( 𝑟 = 𝐵 → ( 𝑟 ∈ ( R ‘ 𝐵 ) ↔ 𝐵 ∈ ( R ‘ 𝐵 ) ) ) |
| 194 |
193
|
notbid |
⊢ ( 𝑟 = 𝐵 → ( ¬ 𝑟 ∈ ( R ‘ 𝐵 ) ↔ ¬ 𝐵 ∈ ( R ‘ 𝐵 ) ) ) |
| 195 |
192 194
|
syl5ibrcom |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝑟 = 𝐵 → ¬ 𝑟 ∈ ( R ‘ 𝐵 ) ) ) |
| 196 |
195
|
necon2ad |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝑟 ∈ ( R ‘ 𝐵 ) → 𝑟 ≠ 𝐵 ) ) |
| 197 |
196
|
imp |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑟 ∈ ( R ‘ 𝐵 ) ) → 𝑟 ≠ 𝐵 ) |
| 198 |
197
|
olcd |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑟 ∈ ( R ‘ 𝐵 ) ) → ( 𝐴 ≠ 𝐴 ∨ 𝑟 ≠ 𝐵 ) ) |
| 199 |
|
opthneg |
⊢ ( ( 𝐴 ∈ No ∧ 𝑟 ∈ ( R ‘ 𝐵 ) ) → ( 〈 𝐴 , 𝑟 〉 ≠ 〈 𝐴 , 𝐵 〉 ↔ ( 𝐴 ≠ 𝐴 ∨ 𝑟 ≠ 𝐵 ) ) ) |
| 200 |
199
|
adantlr |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑟 ∈ ( R ‘ 𝐵 ) ) → ( 〈 𝐴 , 𝑟 〉 ≠ 〈 𝐴 , 𝐵 〉 ↔ ( 𝐴 ≠ 𝐴 ∨ 𝑟 ≠ 𝐵 ) ) ) |
| 201 |
198 200
|
mpbird |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑟 ∈ ( R ‘ 𝐵 ) ) → 〈 𝐴 , 𝑟 〉 ≠ 〈 𝐴 , 𝐵 〉 ) |
| 202 |
|
eldifsn |
⊢ ( 〈 𝐴 , 𝑟 〉 ∈ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ↔ ( 〈 𝐴 , 𝑟 〉 ∈ ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∧ 〈 𝐴 , 𝑟 〉 ≠ 〈 𝐴 , 𝐵 〉 ) ) |
| 203 |
190 201 202
|
sylanbrc |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑟 ∈ ( R ‘ 𝐵 ) ) → 〈 𝐴 , 𝑟 〉 ∈ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) |
| 204 |
203
|
fvresd |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑟 ∈ ( R ‘ 𝐵 ) ) → ( ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) ‘ 〈 𝐴 , 𝑟 〉 ) = ( +s ‘ 〈 𝐴 , 𝑟 〉 ) ) |
| 205 |
|
df-ov |
⊢ ( 𝐴 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) 𝑟 ) = ( ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) ‘ 〈 𝐴 , 𝑟 〉 ) |
| 206 |
|
df-ov |
⊢ ( 𝐴 +s 𝑟 ) = ( +s ‘ 〈 𝐴 , 𝑟 〉 ) |
| 207 |
204 205 206
|
3eqtr4g |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑟 ∈ ( R ‘ 𝐵 ) ) → ( 𝐴 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) 𝑟 ) = ( 𝐴 +s 𝑟 ) ) |
| 208 |
183 207
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑟 ∈ ( R ‘ 𝐵 ) ) → ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) 𝑟 ) = ( 𝐴 +s 𝑟 ) ) |
| 209 |
208
|
eqeq2d |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑟 ∈ ( R ‘ 𝐵 ) ) → ( 𝑧 = ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) 𝑟 ) ↔ 𝑧 = ( 𝐴 +s 𝑟 ) ) ) |
| 210 |
181 209
|
sylbida |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑟 ∈ ( R ‘ ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) ) → ( 𝑧 = ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) 𝑟 ) ↔ 𝑧 = ( 𝐴 +s 𝑟 ) ) ) |
| 211 |
180 210
|
rexeqbidva |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ∃ 𝑟 ∈ ( R ‘ ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) 𝑧 = ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) 𝑟 ) ↔ ∃ 𝑟 ∈ ( R ‘ 𝐵 ) 𝑧 = ( 𝐴 +s 𝑟 ) ) ) |
| 212 |
211
|
abbidv |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) 𝑧 = ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) 𝑟 ) } = { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐵 ) 𝑧 = ( 𝐴 +s 𝑟 ) } ) |
| 213 |
179 212
|
uneq12d |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( { 𝑦 ∣ ∃ 𝑟 ∈ ( R ‘ ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ) 𝑦 = ( 𝑟 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) } ∪ { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) 𝑧 = ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) 𝑟 ) } ) = ( { 𝑦 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) 𝑦 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐵 ) 𝑧 = ( 𝐴 +s 𝑟 ) } ) ) |
| 214 |
145 213
|
oveq12d |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ) 𝑦 = ( 𝑙 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) } ∪ { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) 𝑧 = ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) 𝑙 ) } ) |s ( { 𝑦 ∣ ∃ 𝑟 ∈ ( R ‘ ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ) 𝑦 = ( 𝑟 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) } ∪ { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) 𝑧 = ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) 𝑟 ) } ) ) = ( ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐵 ) 𝑧 = ( 𝐴 +s 𝑙 ) } ) |s ( { 𝑦 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) 𝑦 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐵 ) 𝑧 = ( 𝐴 +s 𝑟 ) } ) ) ) |
| 215 |
68 214
|
eqtrid |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 〈 𝐴 , 𝐵 〉 ( 𝑥 ∈ V , 𝑎 ∈ V ↦ ( ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ ( 1st ‘ 𝑥 ) ) 𝑦 = ( 𝑙 𝑎 ( 2nd ‘ 𝑥 ) ) } ∪ { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ ( 2nd ‘ 𝑥 ) ) 𝑧 = ( ( 1st ‘ 𝑥 ) 𝑎 𝑙 ) } ) |s ( { 𝑦 ∣ ∃ 𝑟 ∈ ( R ‘ ( 1st ‘ 𝑥 ) ) 𝑦 = ( 𝑟 𝑎 ( 2nd ‘ 𝑥 ) ) } ∪ { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ ( 2nd ‘ 𝑥 ) ) 𝑧 = ( ( 1st ‘ 𝑥 ) 𝑎 𝑟 ) } ) ) ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) ) = ( ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐵 ) 𝑧 = ( 𝐴 +s 𝑙 ) } ) |s ( { 𝑦 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) 𝑦 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐵 ) 𝑧 = ( 𝐴 +s 𝑟 ) } ) ) ) |
| 216 |
2 215
|
eqtrd |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 +s 𝐵 ) = ( ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐵 ) 𝑧 = ( 𝐴 +s 𝑙 ) } ) |s ( { 𝑦 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) 𝑦 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐵 ) 𝑧 = ( 𝐴 +s 𝑟 ) } ) ) ) |