Metamath Proof Explorer


Theorem adj0

Description: Adjoint of the zero operator. (Contributed by NM, 20-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion adj0 ( adj ‘ 0hop ) = 0hop

Proof

Step Hyp Ref Expression
1 ho0f 0hop : ℋ ⟶ ℋ
2 ho0val ( 𝑥 ∈ ℋ → ( 0hop𝑥 ) = 0 )
3 2 oveq1d ( 𝑥 ∈ ℋ → ( ( 0hop𝑥 ) ·ih 𝑦 ) = ( 0 ·ih 𝑦 ) )
4 hi01 ( 𝑦 ∈ ℋ → ( 0 ·ih 𝑦 ) = 0 )
5 3 4 sylan9eq ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 0hop𝑥 ) ·ih 𝑦 ) = 0 )
6 ho0val ( 𝑦 ∈ ℋ → ( 0hop𝑦 ) = 0 )
7 6 oveq2d ( 𝑦 ∈ ℋ → ( 𝑥 ·ih ( 0hop𝑦 ) ) = ( 𝑥 ·ih 0 ) )
8 hi02 ( 𝑥 ∈ ℋ → ( 𝑥 ·ih 0 ) = 0 )
9 7 8 sylan9eqr ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ih ( 0hop𝑦 ) ) = 0 )
10 5 9 eqtr4d ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 0hop𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 0hop𝑦 ) ) )
11 10 rgen2 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 0hop𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 0hop𝑦 ) )
12 adjeq ( ( 0hop : ℋ ⟶ ℋ ∧ 0hop : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 0hop𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 0hop𝑦 ) ) ) → ( adj ‘ 0hop ) = 0hop )
13 1 1 11 12 mp3an ( adj ‘ 0hop ) = 0hop