Metamath Proof Explorer


Theorem adj1

Description: Property of an adjoint Hilbert space operator. (Contributed by NM, 15-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion adj1 ( ( 𝑇 ∈ dom adj𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ·ih ( 𝑇𝐵 ) ) = ( ( ( adj𝑇 ) ‘ 𝐴 ) ·ih 𝐵 ) )

Proof

Step Hyp Ref Expression
1 funadj Fun adj
2 funfvop ( ( Fun adj𝑇 ∈ dom adj ) → ⟨ 𝑇 , ( adj𝑇 ) ⟩ ∈ adj )
3 1 2 mpan ( 𝑇 ∈ dom adj → ⟨ 𝑇 , ( adj𝑇 ) ⟩ ∈ adj )
4 dfadj2 adj = { ⟨ 𝑧 , 𝑤 ⟩ ∣ ( 𝑧 : ℋ ⟶ ℋ ∧ 𝑤 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑧𝑦 ) ) = ( ( 𝑤𝑥 ) ·ih 𝑦 ) ) }
5 3 4 eleqtrdi ( 𝑇 ∈ dom adj → ⟨ 𝑇 , ( adj𝑇 ) ⟩ ∈ { ⟨ 𝑧 , 𝑤 ⟩ ∣ ( 𝑧 : ℋ ⟶ ℋ ∧ 𝑤 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑧𝑦 ) ) = ( ( 𝑤𝑥 ) ·ih 𝑦 ) ) } )
6 fvex ( adj𝑇 ) ∈ V
7 feq1 ( 𝑧 = 𝑇 → ( 𝑧 : ℋ ⟶ ℋ ↔ 𝑇 : ℋ ⟶ ℋ ) )
8 fveq1 ( 𝑧 = 𝑇 → ( 𝑧𝑦 ) = ( 𝑇𝑦 ) )
9 8 oveq2d ( 𝑧 = 𝑇 → ( 𝑥 ·ih ( 𝑧𝑦 ) ) = ( 𝑥 ·ih ( 𝑇𝑦 ) ) )
10 9 eqeq1d ( 𝑧 = 𝑇 → ( ( 𝑥 ·ih ( 𝑧𝑦 ) ) = ( ( 𝑤𝑥 ) ·ih 𝑦 ) ↔ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑤𝑥 ) ·ih 𝑦 ) ) )
11 10 2ralbidv ( 𝑧 = 𝑇 → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑧𝑦 ) ) = ( ( 𝑤𝑥 ) ·ih 𝑦 ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑤𝑥 ) ·ih 𝑦 ) ) )
12 7 11 3anbi13d ( 𝑧 = 𝑇 → ( ( 𝑧 : ℋ ⟶ ℋ ∧ 𝑤 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑧𝑦 ) ) = ( ( 𝑤𝑥 ) ·ih 𝑦 ) ) ↔ ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑤 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑤𝑥 ) ·ih 𝑦 ) ) ) )
13 feq1 ( 𝑤 = ( adj𝑇 ) → ( 𝑤 : ℋ ⟶ ℋ ↔ ( adj𝑇 ) : ℋ ⟶ ℋ ) )
14 fveq1 ( 𝑤 = ( adj𝑇 ) → ( 𝑤𝑥 ) = ( ( adj𝑇 ) ‘ 𝑥 ) )
15 14 oveq1d ( 𝑤 = ( adj𝑇 ) → ( ( 𝑤𝑥 ) ·ih 𝑦 ) = ( ( ( adj𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) )
16 15 eqeq2d ( 𝑤 = ( adj𝑇 ) → ( ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑤𝑥 ) ·ih 𝑦 ) ↔ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( ( adj𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) ) )
17 16 2ralbidv ( 𝑤 = ( adj𝑇 ) → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑤𝑥 ) ·ih 𝑦 ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( ( adj𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) ) )
18 13 17 3anbi23d ( 𝑤 = ( adj𝑇 ) → ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑤 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑤𝑥 ) ·ih 𝑦 ) ) ↔ ( 𝑇 : ℋ ⟶ ℋ ∧ ( adj𝑇 ) : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( ( adj𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) ) ) )
19 12 18 opelopabg ( ( 𝑇 ∈ dom adj ∧ ( adj𝑇 ) ∈ V ) → ( ⟨ 𝑇 , ( adj𝑇 ) ⟩ ∈ { ⟨ 𝑧 , 𝑤 ⟩ ∣ ( 𝑧 : ℋ ⟶ ℋ ∧ 𝑤 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑧𝑦 ) ) = ( ( 𝑤𝑥 ) ·ih 𝑦 ) ) } ↔ ( 𝑇 : ℋ ⟶ ℋ ∧ ( adj𝑇 ) : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( ( adj𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) ) ) )
20 6 19 mpan2 ( 𝑇 ∈ dom adj → ( ⟨ 𝑇 , ( adj𝑇 ) ⟩ ∈ { ⟨ 𝑧 , 𝑤 ⟩ ∣ ( 𝑧 : ℋ ⟶ ℋ ∧ 𝑤 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑧𝑦 ) ) = ( ( 𝑤𝑥 ) ·ih 𝑦 ) ) } ↔ ( 𝑇 : ℋ ⟶ ℋ ∧ ( adj𝑇 ) : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( ( adj𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) ) ) )
21 5 20 mpbid ( 𝑇 ∈ dom adj → ( 𝑇 : ℋ ⟶ ℋ ∧ ( adj𝑇 ) : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( ( adj𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) ) )
22 21 simp3d ( 𝑇 ∈ dom adj → ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( ( adj𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) )
23 oveq1 ( 𝑥 = 𝐴 → ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( 𝐴 ·ih ( 𝑇𝑦 ) ) )
24 fveq2 ( 𝑥 = 𝐴 → ( ( adj𝑇 ) ‘ 𝑥 ) = ( ( adj𝑇 ) ‘ 𝐴 ) )
25 24 oveq1d ( 𝑥 = 𝐴 → ( ( ( adj𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) = ( ( ( adj𝑇 ) ‘ 𝐴 ) ·ih 𝑦 ) )
26 23 25 eqeq12d ( 𝑥 = 𝐴 → ( ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( ( adj𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) ↔ ( 𝐴 ·ih ( 𝑇𝑦 ) ) = ( ( ( adj𝑇 ) ‘ 𝐴 ) ·ih 𝑦 ) ) )
27 fveq2 ( 𝑦 = 𝐵 → ( 𝑇𝑦 ) = ( 𝑇𝐵 ) )
28 27 oveq2d ( 𝑦 = 𝐵 → ( 𝐴 ·ih ( 𝑇𝑦 ) ) = ( 𝐴 ·ih ( 𝑇𝐵 ) ) )
29 oveq2 ( 𝑦 = 𝐵 → ( ( ( adj𝑇 ) ‘ 𝐴 ) ·ih 𝑦 ) = ( ( ( adj𝑇 ) ‘ 𝐴 ) ·ih 𝐵 ) )
30 28 29 eqeq12d ( 𝑦 = 𝐵 → ( ( 𝐴 ·ih ( 𝑇𝑦 ) ) = ( ( ( adj𝑇 ) ‘ 𝐴 ) ·ih 𝑦 ) ↔ ( 𝐴 ·ih ( 𝑇𝐵 ) ) = ( ( ( adj𝑇 ) ‘ 𝐴 ) ·ih 𝐵 ) ) )
31 26 30 rspc2v ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( ( adj𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) → ( 𝐴 ·ih ( 𝑇𝐵 ) ) = ( ( ( adj𝑇 ) ‘ 𝐴 ) ·ih 𝐵 ) ) )
32 22 31 syl5com ( 𝑇 ∈ dom adj → ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ·ih ( 𝑇𝐵 ) ) = ( ( ( adj𝑇 ) ‘ 𝐴 ) ·ih 𝐵 ) ) )
33 32 3impib ( ( 𝑇 ∈ dom adj𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ·ih ( 𝑇𝐵 ) ) = ( ( ( adj𝑇 ) ‘ 𝐴 ) ·ih 𝐵 ) )