| Step |
Hyp |
Ref |
Expression |
| 1 |
|
funadj |
⊢ Fun adjℎ |
| 2 |
|
funfvop |
⊢ ( ( Fun adjℎ ∧ 𝑇 ∈ dom adjℎ ) → 〈 𝑇 , ( adjℎ ‘ 𝑇 ) 〉 ∈ adjℎ ) |
| 3 |
1 2
|
mpan |
⊢ ( 𝑇 ∈ dom adjℎ → 〈 𝑇 , ( adjℎ ‘ 𝑇 ) 〉 ∈ adjℎ ) |
| 4 |
|
dfadj2 |
⊢ adjℎ = { 〈 𝑧 , 𝑤 〉 ∣ ( 𝑧 : ℋ ⟶ ℋ ∧ 𝑤 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑧 ‘ 𝑦 ) ) = ( ( 𝑤 ‘ 𝑥 ) ·ih 𝑦 ) ) } |
| 5 |
3 4
|
eleqtrdi |
⊢ ( 𝑇 ∈ dom adjℎ → 〈 𝑇 , ( adjℎ ‘ 𝑇 ) 〉 ∈ { 〈 𝑧 , 𝑤 〉 ∣ ( 𝑧 : ℋ ⟶ ℋ ∧ 𝑤 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑧 ‘ 𝑦 ) ) = ( ( 𝑤 ‘ 𝑥 ) ·ih 𝑦 ) ) } ) |
| 6 |
|
fvex |
⊢ ( adjℎ ‘ 𝑇 ) ∈ V |
| 7 |
|
feq1 |
⊢ ( 𝑧 = 𝑇 → ( 𝑧 : ℋ ⟶ ℋ ↔ 𝑇 : ℋ ⟶ ℋ ) ) |
| 8 |
|
fveq1 |
⊢ ( 𝑧 = 𝑇 → ( 𝑧 ‘ 𝑦 ) = ( 𝑇 ‘ 𝑦 ) ) |
| 9 |
8
|
oveq2d |
⊢ ( 𝑧 = 𝑇 → ( 𝑥 ·ih ( 𝑧 ‘ 𝑦 ) ) = ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) ) |
| 10 |
9
|
eqeq1d |
⊢ ( 𝑧 = 𝑇 → ( ( 𝑥 ·ih ( 𝑧 ‘ 𝑦 ) ) = ( ( 𝑤 ‘ 𝑥 ) ·ih 𝑦 ) ↔ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑤 ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
| 11 |
10
|
2ralbidv |
⊢ ( 𝑧 = 𝑇 → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑧 ‘ 𝑦 ) ) = ( ( 𝑤 ‘ 𝑥 ) ·ih 𝑦 ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑤 ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
| 12 |
7 11
|
3anbi13d |
⊢ ( 𝑧 = 𝑇 → ( ( 𝑧 : ℋ ⟶ ℋ ∧ 𝑤 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑧 ‘ 𝑦 ) ) = ( ( 𝑤 ‘ 𝑥 ) ·ih 𝑦 ) ) ↔ ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑤 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑤 ‘ 𝑥 ) ·ih 𝑦 ) ) ) ) |
| 13 |
|
feq1 |
⊢ ( 𝑤 = ( adjℎ ‘ 𝑇 ) → ( 𝑤 : ℋ ⟶ ℋ ↔ ( adjℎ ‘ 𝑇 ) : ℋ ⟶ ℋ ) ) |
| 14 |
|
fveq1 |
⊢ ( 𝑤 = ( adjℎ ‘ 𝑇 ) → ( 𝑤 ‘ 𝑥 ) = ( ( adjℎ ‘ 𝑇 ) ‘ 𝑥 ) ) |
| 15 |
14
|
oveq1d |
⊢ ( 𝑤 = ( adjℎ ‘ 𝑇 ) → ( ( 𝑤 ‘ 𝑥 ) ·ih 𝑦 ) = ( ( ( adjℎ ‘ 𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) ) |
| 16 |
15
|
eqeq2d |
⊢ ( 𝑤 = ( adjℎ ‘ 𝑇 ) → ( ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑤 ‘ 𝑥 ) ·ih 𝑦 ) ↔ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( ( adjℎ ‘ 𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
| 17 |
16
|
2ralbidv |
⊢ ( 𝑤 = ( adjℎ ‘ 𝑇 ) → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑤 ‘ 𝑥 ) ·ih 𝑦 ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( ( adjℎ ‘ 𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
| 18 |
13 17
|
3anbi23d |
⊢ ( 𝑤 = ( adjℎ ‘ 𝑇 ) → ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑤 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑤 ‘ 𝑥 ) ·ih 𝑦 ) ) ↔ ( 𝑇 : ℋ ⟶ ℋ ∧ ( adjℎ ‘ 𝑇 ) : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( ( adjℎ ‘ 𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) ) ) ) |
| 19 |
12 18
|
opelopabg |
⊢ ( ( 𝑇 ∈ dom adjℎ ∧ ( adjℎ ‘ 𝑇 ) ∈ V ) → ( 〈 𝑇 , ( adjℎ ‘ 𝑇 ) 〉 ∈ { 〈 𝑧 , 𝑤 〉 ∣ ( 𝑧 : ℋ ⟶ ℋ ∧ 𝑤 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑧 ‘ 𝑦 ) ) = ( ( 𝑤 ‘ 𝑥 ) ·ih 𝑦 ) ) } ↔ ( 𝑇 : ℋ ⟶ ℋ ∧ ( adjℎ ‘ 𝑇 ) : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( ( adjℎ ‘ 𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) ) ) ) |
| 20 |
6 19
|
mpan2 |
⊢ ( 𝑇 ∈ dom adjℎ → ( 〈 𝑇 , ( adjℎ ‘ 𝑇 ) 〉 ∈ { 〈 𝑧 , 𝑤 〉 ∣ ( 𝑧 : ℋ ⟶ ℋ ∧ 𝑤 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑧 ‘ 𝑦 ) ) = ( ( 𝑤 ‘ 𝑥 ) ·ih 𝑦 ) ) } ↔ ( 𝑇 : ℋ ⟶ ℋ ∧ ( adjℎ ‘ 𝑇 ) : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( ( adjℎ ‘ 𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) ) ) ) |
| 21 |
5 20
|
mpbid |
⊢ ( 𝑇 ∈ dom adjℎ → ( 𝑇 : ℋ ⟶ ℋ ∧ ( adjℎ ‘ 𝑇 ) : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( ( adjℎ ‘ 𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
| 22 |
21
|
simp3d |
⊢ ( 𝑇 ∈ dom adjℎ → ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( ( adjℎ ‘ 𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) ) |
| 23 |
|
oveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( 𝐴 ·ih ( 𝑇 ‘ 𝑦 ) ) ) |
| 24 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( ( adjℎ ‘ 𝑇 ) ‘ 𝑥 ) = ( ( adjℎ ‘ 𝑇 ) ‘ 𝐴 ) ) |
| 25 |
24
|
oveq1d |
⊢ ( 𝑥 = 𝐴 → ( ( ( adjℎ ‘ 𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) = ( ( ( adjℎ ‘ 𝑇 ) ‘ 𝐴 ) ·ih 𝑦 ) ) |
| 26 |
23 25
|
eqeq12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( ( adjℎ ‘ 𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) ↔ ( 𝐴 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( ( adjℎ ‘ 𝑇 ) ‘ 𝐴 ) ·ih 𝑦 ) ) ) |
| 27 |
|
fveq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝑇 ‘ 𝑦 ) = ( 𝑇 ‘ 𝐵 ) ) |
| 28 |
27
|
oveq2d |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( 𝐴 ·ih ( 𝑇 ‘ 𝐵 ) ) ) |
| 29 |
|
oveq2 |
⊢ ( 𝑦 = 𝐵 → ( ( ( adjℎ ‘ 𝑇 ) ‘ 𝐴 ) ·ih 𝑦 ) = ( ( ( adjℎ ‘ 𝑇 ) ‘ 𝐴 ) ·ih 𝐵 ) ) |
| 30 |
28 29
|
eqeq12d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( ( adjℎ ‘ 𝑇 ) ‘ 𝐴 ) ·ih 𝑦 ) ↔ ( 𝐴 ·ih ( 𝑇 ‘ 𝐵 ) ) = ( ( ( adjℎ ‘ 𝑇 ) ‘ 𝐴 ) ·ih 𝐵 ) ) ) |
| 31 |
26 30
|
rspc2v |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( ( adjℎ ‘ 𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) → ( 𝐴 ·ih ( 𝑇 ‘ 𝐵 ) ) = ( ( ( adjℎ ‘ 𝑇 ) ‘ 𝐴 ) ·ih 𝐵 ) ) ) |
| 32 |
22 31
|
syl5com |
⊢ ( 𝑇 ∈ dom adjℎ → ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ·ih ( 𝑇 ‘ 𝐵 ) ) = ( ( ( adjℎ ‘ 𝑇 ) ‘ 𝐴 ) ·ih 𝐵 ) ) ) |
| 33 |
32
|
3impib |
⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ·ih ( 𝑇 ‘ 𝐵 ) ) = ( ( ( adjℎ ‘ 𝑇 ) ‘ 𝐴 ) ·ih 𝐵 ) ) |