Metamath Proof Explorer


Theorem adj1o

Description: The adjoint function maps one-to-one onto its domain. (Contributed by NM, 15-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion adj1o adj : dom adj1-1-onto→ dom adj

Proof

Step Hyp Ref Expression
1 funadj Fun adj
2 funfn ( Fun adj ↔ adj Fn dom adj )
3 1 2 mpbi adj Fn dom adj
4 funcnvadj Fun adj
5 df-rn ran adj = dom adj
6 cnvadj adj = adj
7 6 dmeqi dom adj = dom adj
8 5 7 eqtri ran adj = dom adj
9 dff1o2 ( adj : dom adj1-1-onto→ dom adj ↔ ( adj Fn dom adj ∧ Fun adj ∧ ran adj = dom adj ) )
10 3 4 8 9 mpbir3an adj : dom adj1-1-onto→ dom adj