Step |
Hyp |
Ref |
Expression |
1 |
|
adj1 |
⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( 𝐵 ·ih ( 𝑇 ‘ 𝐴 ) ) = ( ( ( adjℎ ‘ 𝑇 ) ‘ 𝐵 ) ·ih 𝐴 ) ) |
2 |
|
simp2 |
⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → 𝐵 ∈ ℋ ) |
3 |
|
dmadjop |
⊢ ( 𝑇 ∈ dom adjℎ → 𝑇 : ℋ ⟶ ℋ ) |
4 |
3
|
ffvelrnda |
⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ ) → ( 𝑇 ‘ 𝐴 ) ∈ ℋ ) |
5 |
4
|
3adant2 |
⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( 𝑇 ‘ 𝐴 ) ∈ ℋ ) |
6 |
|
ax-his1 |
⊢ ( ( 𝐵 ∈ ℋ ∧ ( 𝑇 ‘ 𝐴 ) ∈ ℋ ) → ( 𝐵 ·ih ( 𝑇 ‘ 𝐴 ) ) = ( ∗ ‘ ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐵 ) ) ) |
7 |
2 5 6
|
syl2anc |
⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( 𝐵 ·ih ( 𝑇 ‘ 𝐴 ) ) = ( ∗ ‘ ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐵 ) ) ) |
8 |
|
adjcl |
⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ) → ( ( adjℎ ‘ 𝑇 ) ‘ 𝐵 ) ∈ ℋ ) |
9 |
8
|
3adant3 |
⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( adjℎ ‘ 𝑇 ) ‘ 𝐵 ) ∈ ℋ ) |
10 |
|
simp3 |
⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → 𝐴 ∈ ℋ ) |
11 |
|
ax-his1 |
⊢ ( ( ( ( adjℎ ‘ 𝑇 ) ‘ 𝐵 ) ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( ( adjℎ ‘ 𝑇 ) ‘ 𝐵 ) ·ih 𝐴 ) = ( ∗ ‘ ( 𝐴 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝐵 ) ) ) ) |
12 |
9 10 11
|
syl2anc |
⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( ( adjℎ ‘ 𝑇 ) ‘ 𝐵 ) ·ih 𝐴 ) = ( ∗ ‘ ( 𝐴 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝐵 ) ) ) ) |
13 |
1 7 12
|
3eqtr3d |
⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ∗ ‘ ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐵 ) ) = ( ∗ ‘ ( 𝐴 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝐵 ) ) ) ) |
14 |
|
hicl |
⊢ ( ( ( 𝑇 ‘ 𝐴 ) ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐵 ) ∈ ℂ ) |
15 |
5 2 14
|
syl2anc |
⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐵 ) ∈ ℂ ) |
16 |
|
hicl |
⊢ ( ( 𝐴 ∈ ℋ ∧ ( ( adjℎ ‘ 𝑇 ) ‘ 𝐵 ) ∈ ℋ ) → ( 𝐴 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝐵 ) ) ∈ ℂ ) |
17 |
10 9 16
|
syl2anc |
⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( 𝐴 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝐵 ) ) ∈ ℂ ) |
18 |
|
cj11 |
⊢ ( ( ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐵 ) ∈ ℂ ∧ ( 𝐴 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝐵 ) ) ∈ ℂ ) → ( ( ∗ ‘ ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐵 ) ) = ( ∗ ‘ ( 𝐴 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝐵 ) ) ) ↔ ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐵 ) = ( 𝐴 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝐵 ) ) ) ) |
19 |
15 17 18
|
syl2anc |
⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( ∗ ‘ ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐵 ) ) = ( ∗ ‘ ( 𝐴 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝐵 ) ) ) ↔ ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐵 ) = ( 𝐴 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝐵 ) ) ) ) |
20 |
13 19
|
mpbid |
⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐵 ) = ( 𝐴 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝐵 ) ) ) |
21 |
20
|
3com23 |
⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐵 ) = ( 𝐴 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝐵 ) ) ) |