Metamath Proof Explorer


Theorem adjadj

Description: Double adjoint. Theorem 3.11(iv) of Beran p. 106. (Contributed by NM, 15-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion adjadj ( 𝑇 ∈ dom adj → ( adj ‘ ( adj𝑇 ) ) = 𝑇 )

Proof

Step Hyp Ref Expression
1 adj2 ( ( 𝑇 ∈ dom adj𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑇𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( ( adj𝑇 ) ‘ 𝑦 ) ) )
2 dmadjrn ( 𝑇 ∈ dom adj → ( adj𝑇 ) ∈ dom adj )
3 adj1 ( ( ( adj𝑇 ) ∈ dom adj𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ih ( ( adj𝑇 ) ‘ 𝑦 ) ) = ( ( ( adj ‘ ( adj𝑇 ) ) ‘ 𝑥 ) ·ih 𝑦 ) )
4 2 3 syl3an1 ( ( 𝑇 ∈ dom adj𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ih ( ( adj𝑇 ) ‘ 𝑦 ) ) = ( ( ( adj ‘ ( adj𝑇 ) ) ‘ 𝑥 ) ·ih 𝑦 ) )
5 1 4 eqtr2d ( ( 𝑇 ∈ dom adj𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( ( adj ‘ ( adj𝑇 ) ) ‘ 𝑥 ) ·ih 𝑦 ) = ( ( 𝑇𝑥 ) ·ih 𝑦 ) )
6 5 3expib ( 𝑇 ∈ dom adj → ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( ( adj ‘ ( adj𝑇 ) ) ‘ 𝑥 ) ·ih 𝑦 ) = ( ( 𝑇𝑥 ) ·ih 𝑦 ) ) )
7 6 ralrimivv ( 𝑇 ∈ dom adj → ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( ( adj ‘ ( adj𝑇 ) ) ‘ 𝑥 ) ·ih 𝑦 ) = ( ( 𝑇𝑥 ) ·ih 𝑦 ) )
8 dmadjrn ( ( adj𝑇 ) ∈ dom adj → ( adj ‘ ( adj𝑇 ) ) ∈ dom adj )
9 dmadjop ( ( adj ‘ ( adj𝑇 ) ) ∈ dom adj → ( adj ‘ ( adj𝑇 ) ) : ℋ ⟶ ℋ )
10 2 8 9 3syl ( 𝑇 ∈ dom adj → ( adj ‘ ( adj𝑇 ) ) : ℋ ⟶ ℋ )
11 dmadjop ( 𝑇 ∈ dom adj𝑇 : ℋ ⟶ ℋ )
12 hoeq1 ( ( ( adj ‘ ( adj𝑇 ) ) : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( ( adj ‘ ( adj𝑇 ) ) ‘ 𝑥 ) ·ih 𝑦 ) = ( ( 𝑇𝑥 ) ·ih 𝑦 ) ↔ ( adj ‘ ( adj𝑇 ) ) = 𝑇 ) )
13 10 11 12 syl2anc ( 𝑇 ∈ dom adj → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( ( adj ‘ ( adj𝑇 ) ) ‘ 𝑥 ) ·ih 𝑦 ) = ( ( 𝑇𝑥 ) ·ih 𝑦 ) ↔ ( adj ‘ ( adj𝑇 ) ) = 𝑇 ) )
14 7 13 mpbid ( 𝑇 ∈ dom adj → ( adj ‘ ( adj𝑇 ) ) = 𝑇 )