| Step |
Hyp |
Ref |
Expression |
| 1 |
|
adj2 |
⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ) |
| 2 |
|
dmadjrn |
⊢ ( 𝑇 ∈ dom adjℎ → ( adjℎ ‘ 𝑇 ) ∈ dom adjℎ ) |
| 3 |
|
adj1 |
⊢ ( ( ( adjℎ ‘ 𝑇 ) ∈ dom adjℎ ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) = ( ( ( adjℎ ‘ ( adjℎ ‘ 𝑇 ) ) ‘ 𝑥 ) ·ih 𝑦 ) ) |
| 4 |
2 3
|
syl3an1 |
⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) = ( ( ( adjℎ ‘ ( adjℎ ‘ 𝑇 ) ) ‘ 𝑥 ) ·ih 𝑦 ) ) |
| 5 |
1 4
|
eqtr2d |
⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( ( adjℎ ‘ ( adjℎ ‘ 𝑇 ) ) ‘ 𝑥 ) ·ih 𝑦 ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ) |
| 6 |
5
|
3expib |
⊢ ( 𝑇 ∈ dom adjℎ → ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( ( adjℎ ‘ ( adjℎ ‘ 𝑇 ) ) ‘ 𝑥 ) ·ih 𝑦 ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
| 7 |
6
|
ralrimivv |
⊢ ( 𝑇 ∈ dom adjℎ → ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( ( adjℎ ‘ ( adjℎ ‘ 𝑇 ) ) ‘ 𝑥 ) ·ih 𝑦 ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ) |
| 8 |
|
dmadjrn |
⊢ ( ( adjℎ ‘ 𝑇 ) ∈ dom adjℎ → ( adjℎ ‘ ( adjℎ ‘ 𝑇 ) ) ∈ dom adjℎ ) |
| 9 |
|
dmadjop |
⊢ ( ( adjℎ ‘ ( adjℎ ‘ 𝑇 ) ) ∈ dom adjℎ → ( adjℎ ‘ ( adjℎ ‘ 𝑇 ) ) : ℋ ⟶ ℋ ) |
| 10 |
2 8 9
|
3syl |
⊢ ( 𝑇 ∈ dom adjℎ → ( adjℎ ‘ ( adjℎ ‘ 𝑇 ) ) : ℋ ⟶ ℋ ) |
| 11 |
|
dmadjop |
⊢ ( 𝑇 ∈ dom adjℎ → 𝑇 : ℋ ⟶ ℋ ) |
| 12 |
|
hoeq1 |
⊢ ( ( ( adjℎ ‘ ( adjℎ ‘ 𝑇 ) ) : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( ( adjℎ ‘ ( adjℎ ‘ 𝑇 ) ) ‘ 𝑥 ) ·ih 𝑦 ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ↔ ( adjℎ ‘ ( adjℎ ‘ 𝑇 ) ) = 𝑇 ) ) |
| 13 |
10 11 12
|
syl2anc |
⊢ ( 𝑇 ∈ dom adjℎ → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( ( adjℎ ‘ ( adjℎ ‘ 𝑇 ) ) ‘ 𝑥 ) ·ih 𝑦 ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ↔ ( adjℎ ‘ ( adjℎ ‘ 𝑇 ) ) = 𝑇 ) ) |
| 14 |
7 13
|
mpbid |
⊢ ( 𝑇 ∈ dom adjℎ → ( adjℎ ‘ ( adjℎ ‘ 𝑇 ) ) = 𝑇 ) |