Metamath Proof Explorer


Theorem adjbd1o

Description: The mapping of adjoints of bounded linear operators is one-to-one onto. (Contributed by NM, 19-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion adjbd1o ( adj ↾ BndLinOp ) : BndLinOp –1-1-onto→ BndLinOp

Proof

Step Hyp Ref Expression
1 adj1o adj : dom adj1-1-onto→ dom adj
2 f1of1 ( adj : dom adj1-1-onto→ dom adj → adj : dom adj1-1→ dom adj )
3 1 2 ax-mp adj : dom adj1-1→ dom adj
4 bdopssadj BndLinOp ⊆ dom adj
5 f1ores ( ( adj : dom adj1-1→ dom adj ∧ BndLinOp ⊆ dom adj ) → ( adj ↾ BndLinOp ) : BndLinOp –1-1-onto→ ( adj “ BndLinOp ) )
6 3 4 5 mp2an ( adj ↾ BndLinOp ) : BndLinOp –1-1-onto→ ( adj “ BndLinOp )
7 vex 𝑦 ∈ V
8 7 elima ( 𝑦 ∈ ( adj “ BndLinOp ) ↔ ∃ 𝑥 ∈ BndLinOp 𝑥 adj 𝑦 )
9 f1ofn ( adj : dom adj1-1-onto→ dom adj → adj Fn dom adj )
10 1 9 ax-mp adj Fn dom adj
11 bdopadj ( 𝑥 ∈ BndLinOp → 𝑥 ∈ dom adj )
12 fnbrfvb ( ( adj Fn dom adj𝑥 ∈ dom adj ) → ( ( adj𝑥 ) = 𝑦𝑥 adj 𝑦 ) )
13 10 11 12 sylancr ( 𝑥 ∈ BndLinOp → ( ( adj𝑥 ) = 𝑦𝑥 adj 𝑦 ) )
14 13 rexbiia ( ∃ 𝑥 ∈ BndLinOp ( adj𝑥 ) = 𝑦 ↔ ∃ 𝑥 ∈ BndLinOp 𝑥 adj 𝑦 )
15 adjbdlnb ( 𝑥 ∈ BndLinOp ↔ ( adj𝑥 ) ∈ BndLinOp )
16 eleq1 ( ( adj𝑥 ) = 𝑦 → ( ( adj𝑥 ) ∈ BndLinOp ↔ 𝑦 ∈ BndLinOp ) )
17 15 16 syl5bb ( ( adj𝑥 ) = 𝑦 → ( 𝑥 ∈ BndLinOp ↔ 𝑦 ∈ BndLinOp ) )
18 17 biimpcd ( 𝑥 ∈ BndLinOp → ( ( adj𝑥 ) = 𝑦𝑦 ∈ BndLinOp ) )
19 18 rexlimiv ( ∃ 𝑥 ∈ BndLinOp ( adj𝑥 ) = 𝑦𝑦 ∈ BndLinOp )
20 adjbdln ( 𝑦 ∈ BndLinOp → ( adj𝑦 ) ∈ BndLinOp )
21 bdopadj ( 𝑦 ∈ BndLinOp → 𝑦 ∈ dom adj )
22 adjadj ( 𝑦 ∈ dom adj → ( adj ‘ ( adj𝑦 ) ) = 𝑦 )
23 21 22 syl ( 𝑦 ∈ BndLinOp → ( adj ‘ ( adj𝑦 ) ) = 𝑦 )
24 fveqeq2 ( 𝑥 = ( adj𝑦 ) → ( ( adj𝑥 ) = 𝑦 ↔ ( adj ‘ ( adj𝑦 ) ) = 𝑦 ) )
25 24 rspcev ( ( ( adj𝑦 ) ∈ BndLinOp ∧ ( adj ‘ ( adj𝑦 ) ) = 𝑦 ) → ∃ 𝑥 ∈ BndLinOp ( adj𝑥 ) = 𝑦 )
26 20 23 25 syl2anc ( 𝑦 ∈ BndLinOp → ∃ 𝑥 ∈ BndLinOp ( adj𝑥 ) = 𝑦 )
27 19 26 impbii ( ∃ 𝑥 ∈ BndLinOp ( adj𝑥 ) = 𝑦𝑦 ∈ BndLinOp )
28 8 14 27 3bitr2i ( 𝑦 ∈ ( adj “ BndLinOp ) ↔ 𝑦 ∈ BndLinOp )
29 28 eqriv ( adj “ BndLinOp ) = BndLinOp
30 f1oeq3 ( ( adj “ BndLinOp ) = BndLinOp → ( ( adj ↾ BndLinOp ) : BndLinOp –1-1-onto→ ( adj “ BndLinOp ) ↔ ( adj ↾ BndLinOp ) : BndLinOp –1-1-onto→ BndLinOp ) )
31 29 30 ax-mp ( ( adj ↾ BndLinOp ) : BndLinOp –1-1-onto→ ( adj “ BndLinOp ) ↔ ( adj ↾ BndLinOp ) : BndLinOp –1-1-onto→ BndLinOp )
32 6 31 mpbi ( adj ↾ BndLinOp ) : BndLinOp –1-1-onto→ BndLinOp