Step |
Hyp |
Ref |
Expression |
1 |
|
adj1o |
⊢ adjℎ : dom adjℎ –1-1-onto→ dom adjℎ |
2 |
|
f1of1 |
⊢ ( adjℎ : dom adjℎ –1-1-onto→ dom adjℎ → adjℎ : dom adjℎ –1-1→ dom adjℎ ) |
3 |
1 2
|
ax-mp |
⊢ adjℎ : dom adjℎ –1-1→ dom adjℎ |
4 |
|
bdopssadj |
⊢ BndLinOp ⊆ dom adjℎ |
5 |
|
f1ores |
⊢ ( ( adjℎ : dom adjℎ –1-1→ dom adjℎ ∧ BndLinOp ⊆ dom adjℎ ) → ( adjℎ ↾ BndLinOp ) : BndLinOp –1-1-onto→ ( adjℎ “ BndLinOp ) ) |
6 |
3 4 5
|
mp2an |
⊢ ( adjℎ ↾ BndLinOp ) : BndLinOp –1-1-onto→ ( adjℎ “ BndLinOp ) |
7 |
|
vex |
⊢ 𝑦 ∈ V |
8 |
7
|
elima |
⊢ ( 𝑦 ∈ ( adjℎ “ BndLinOp ) ↔ ∃ 𝑥 ∈ BndLinOp 𝑥 adjℎ 𝑦 ) |
9 |
|
f1ofn |
⊢ ( adjℎ : dom adjℎ –1-1-onto→ dom adjℎ → adjℎ Fn dom adjℎ ) |
10 |
1 9
|
ax-mp |
⊢ adjℎ Fn dom adjℎ |
11 |
|
bdopadj |
⊢ ( 𝑥 ∈ BndLinOp → 𝑥 ∈ dom adjℎ ) |
12 |
|
fnbrfvb |
⊢ ( ( adjℎ Fn dom adjℎ ∧ 𝑥 ∈ dom adjℎ ) → ( ( adjℎ ‘ 𝑥 ) = 𝑦 ↔ 𝑥 adjℎ 𝑦 ) ) |
13 |
10 11 12
|
sylancr |
⊢ ( 𝑥 ∈ BndLinOp → ( ( adjℎ ‘ 𝑥 ) = 𝑦 ↔ 𝑥 adjℎ 𝑦 ) ) |
14 |
13
|
rexbiia |
⊢ ( ∃ 𝑥 ∈ BndLinOp ( adjℎ ‘ 𝑥 ) = 𝑦 ↔ ∃ 𝑥 ∈ BndLinOp 𝑥 adjℎ 𝑦 ) |
15 |
|
adjbdlnb |
⊢ ( 𝑥 ∈ BndLinOp ↔ ( adjℎ ‘ 𝑥 ) ∈ BndLinOp ) |
16 |
|
eleq1 |
⊢ ( ( adjℎ ‘ 𝑥 ) = 𝑦 → ( ( adjℎ ‘ 𝑥 ) ∈ BndLinOp ↔ 𝑦 ∈ BndLinOp ) ) |
17 |
15 16
|
syl5bb |
⊢ ( ( adjℎ ‘ 𝑥 ) = 𝑦 → ( 𝑥 ∈ BndLinOp ↔ 𝑦 ∈ BndLinOp ) ) |
18 |
17
|
biimpcd |
⊢ ( 𝑥 ∈ BndLinOp → ( ( adjℎ ‘ 𝑥 ) = 𝑦 → 𝑦 ∈ BndLinOp ) ) |
19 |
18
|
rexlimiv |
⊢ ( ∃ 𝑥 ∈ BndLinOp ( adjℎ ‘ 𝑥 ) = 𝑦 → 𝑦 ∈ BndLinOp ) |
20 |
|
adjbdln |
⊢ ( 𝑦 ∈ BndLinOp → ( adjℎ ‘ 𝑦 ) ∈ BndLinOp ) |
21 |
|
bdopadj |
⊢ ( 𝑦 ∈ BndLinOp → 𝑦 ∈ dom adjℎ ) |
22 |
|
adjadj |
⊢ ( 𝑦 ∈ dom adjℎ → ( adjℎ ‘ ( adjℎ ‘ 𝑦 ) ) = 𝑦 ) |
23 |
21 22
|
syl |
⊢ ( 𝑦 ∈ BndLinOp → ( adjℎ ‘ ( adjℎ ‘ 𝑦 ) ) = 𝑦 ) |
24 |
|
fveqeq2 |
⊢ ( 𝑥 = ( adjℎ ‘ 𝑦 ) → ( ( adjℎ ‘ 𝑥 ) = 𝑦 ↔ ( adjℎ ‘ ( adjℎ ‘ 𝑦 ) ) = 𝑦 ) ) |
25 |
24
|
rspcev |
⊢ ( ( ( adjℎ ‘ 𝑦 ) ∈ BndLinOp ∧ ( adjℎ ‘ ( adjℎ ‘ 𝑦 ) ) = 𝑦 ) → ∃ 𝑥 ∈ BndLinOp ( adjℎ ‘ 𝑥 ) = 𝑦 ) |
26 |
20 23 25
|
syl2anc |
⊢ ( 𝑦 ∈ BndLinOp → ∃ 𝑥 ∈ BndLinOp ( adjℎ ‘ 𝑥 ) = 𝑦 ) |
27 |
19 26
|
impbii |
⊢ ( ∃ 𝑥 ∈ BndLinOp ( adjℎ ‘ 𝑥 ) = 𝑦 ↔ 𝑦 ∈ BndLinOp ) |
28 |
8 14 27
|
3bitr2i |
⊢ ( 𝑦 ∈ ( adjℎ “ BndLinOp ) ↔ 𝑦 ∈ BndLinOp ) |
29 |
28
|
eqriv |
⊢ ( adjℎ “ BndLinOp ) = BndLinOp |
30 |
|
f1oeq3 |
⊢ ( ( adjℎ “ BndLinOp ) = BndLinOp → ( ( adjℎ ↾ BndLinOp ) : BndLinOp –1-1-onto→ ( adjℎ “ BndLinOp ) ↔ ( adjℎ ↾ BndLinOp ) : BndLinOp –1-1-onto→ BndLinOp ) ) |
31 |
29 30
|
ax-mp |
⊢ ( ( adjℎ ↾ BndLinOp ) : BndLinOp –1-1-onto→ ( adjℎ “ BndLinOp ) ↔ ( adjℎ ↾ BndLinOp ) : BndLinOp –1-1-onto→ BndLinOp ) |
32 |
6 31
|
mpbi |
⊢ ( adjℎ ↾ BndLinOp ) : BndLinOp –1-1-onto→ BndLinOp |