Step |
Hyp |
Ref |
Expression |
1 |
|
bdopadj |
⊢ ( 𝑇 ∈ BndLinOp → 𝑇 ∈ dom adjℎ ) |
2 |
|
adjval |
⊢ ( 𝑇 ∈ dom adjℎ → ( adjℎ ‘ 𝑇 ) = ( ℩ 𝑡 ∈ ( ℋ ↑m ℋ ) ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
3 |
1 2
|
syl |
⊢ ( 𝑇 ∈ BndLinOp → ( adjℎ ‘ 𝑇 ) = ( ℩ 𝑡 ∈ ( ℋ ↑m ℋ ) ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
4 |
|
cnlnadj |
⊢ ( 𝑇 ∈ ( LinOp ∩ ContOp ) → ∃ 𝑡 ∈ ( LinOp ∩ ContOp ) ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) ) |
5 |
|
lncnopbd |
⊢ ( 𝑇 ∈ ( LinOp ∩ ContOp ) ↔ 𝑇 ∈ BndLinOp ) |
6 |
|
lncnbd |
⊢ ( LinOp ∩ ContOp ) = BndLinOp |
7 |
6
|
rexeqi |
⊢ ( ∃ 𝑡 ∈ ( LinOp ∩ ContOp ) ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) ↔ ∃ 𝑡 ∈ BndLinOp ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) ) |
8 |
4 5 7
|
3imtr3i |
⊢ ( 𝑇 ∈ BndLinOp → ∃ 𝑡 ∈ BndLinOp ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) ) |
9 |
|
bdopf |
⊢ ( 𝑇 ∈ BndLinOp → 𝑇 : ℋ ⟶ ℋ ) |
10 |
|
bdopf |
⊢ ( 𝑡 ∈ BndLinOp → 𝑡 : ℋ ⟶ ℋ ) |
11 |
|
adjsym |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑡 : ℋ ⟶ ℋ ) → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
12 |
9 10 11
|
syl2an |
⊢ ( ( 𝑇 ∈ BndLinOp ∧ 𝑡 ∈ BndLinOp ) → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
13 |
|
eqcom |
⊢ ( ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) ↔ ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ) |
14 |
13
|
2ralbii |
⊢ ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ) |
15 |
12 14
|
bitr4di |
⊢ ( ( 𝑇 ∈ BndLinOp ∧ 𝑡 ∈ BndLinOp ) → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) ) ) |
16 |
15
|
rexbidva |
⊢ ( 𝑇 ∈ BndLinOp → ( ∃ 𝑡 ∈ BndLinOp ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ↔ ∃ 𝑡 ∈ BndLinOp ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) ) ) |
17 |
8 16
|
mpbird |
⊢ ( 𝑇 ∈ BndLinOp → ∃ 𝑡 ∈ BndLinOp ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ) |
18 |
|
adjeu |
⊢ ( 𝑇 : ℋ ⟶ ℋ → ( 𝑇 ∈ dom adjℎ ↔ ∃! 𝑡 ∈ ( ℋ ↑m ℋ ) ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
19 |
9 18
|
syl |
⊢ ( 𝑇 ∈ BndLinOp → ( 𝑇 ∈ dom adjℎ ↔ ∃! 𝑡 ∈ ( ℋ ↑m ℋ ) ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
20 |
1 19
|
mpbid |
⊢ ( 𝑇 ∈ BndLinOp → ∃! 𝑡 ∈ ( ℋ ↑m ℋ ) ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ) |
21 |
|
ax-hilex |
⊢ ℋ ∈ V |
22 |
21 21
|
elmap |
⊢ ( 𝑡 ∈ ( ℋ ↑m ℋ ) ↔ 𝑡 : ℋ ⟶ ℋ ) |
23 |
10 22
|
sylibr |
⊢ ( 𝑡 ∈ BndLinOp → 𝑡 ∈ ( ℋ ↑m ℋ ) ) |
24 |
23
|
ssriv |
⊢ BndLinOp ⊆ ( ℋ ↑m ℋ ) |
25 |
|
id |
⊢ ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) → ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ) |
26 |
25
|
rgenw |
⊢ ∀ 𝑡 ∈ BndLinOp ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) → ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ) |
27 |
|
riotass2 |
⊢ ( ( ( BndLinOp ⊆ ( ℋ ↑m ℋ ) ∧ ∀ 𝑡 ∈ BndLinOp ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) → ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ) ) ∧ ( ∃ 𝑡 ∈ BndLinOp ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ∧ ∃! 𝑡 ∈ ( ℋ ↑m ℋ ) ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ) ) → ( ℩ 𝑡 ∈ BndLinOp ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ) = ( ℩ 𝑡 ∈ ( ℋ ↑m ℋ ) ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
28 |
24 26 27
|
mpanl12 |
⊢ ( ( ∃ 𝑡 ∈ BndLinOp ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ∧ ∃! 𝑡 ∈ ( ℋ ↑m ℋ ) ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ) → ( ℩ 𝑡 ∈ BndLinOp ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ) = ( ℩ 𝑡 ∈ ( ℋ ↑m ℋ ) ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
29 |
17 20 28
|
syl2anc |
⊢ ( 𝑇 ∈ BndLinOp → ( ℩ 𝑡 ∈ BndLinOp ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ) = ( ℩ 𝑡 ∈ ( ℋ ↑m ℋ ) ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
30 |
3 29
|
eqtr4d |
⊢ ( 𝑇 ∈ BndLinOp → ( adjℎ ‘ 𝑇 ) = ( ℩ 𝑡 ∈ BndLinOp ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
31 |
24
|
a1i |
⊢ ( 𝑇 ∈ BndLinOp → BndLinOp ⊆ ( ℋ ↑m ℋ ) ) |
32 |
|
reuss |
⊢ ( ( BndLinOp ⊆ ( ℋ ↑m ℋ ) ∧ ∃ 𝑡 ∈ BndLinOp ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ∧ ∃! 𝑡 ∈ ( ℋ ↑m ℋ ) ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ) → ∃! 𝑡 ∈ BndLinOp ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ) |
33 |
31 17 20 32
|
syl3anc |
⊢ ( 𝑇 ∈ BndLinOp → ∃! 𝑡 ∈ BndLinOp ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ) |
34 |
|
riotacl |
⊢ ( ∃! 𝑡 ∈ BndLinOp ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) → ( ℩ 𝑡 ∈ BndLinOp ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ) ∈ BndLinOp ) |
35 |
33 34
|
syl |
⊢ ( 𝑇 ∈ BndLinOp → ( ℩ 𝑡 ∈ BndLinOp ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ) ∈ BndLinOp ) |
36 |
30 35
|
eqeltrd |
⊢ ( 𝑇 ∈ BndLinOp → ( adjℎ ‘ 𝑇 ) ∈ BndLinOp ) |