| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bdopadj | ⊢ ( 𝑇  ∈  BndLinOp  →  𝑇  ∈  dom  adjℎ ) | 
						
							| 2 |  | adjval | ⊢ ( 𝑇  ∈  dom  adjℎ  →  ( adjℎ ‘ 𝑇 )  =  ( ℩ 𝑡  ∈  (  ℋ  ↑m   ℋ ) ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑡 ‘ 𝑥 )  ·ih  𝑦 ) ) ) | 
						
							| 3 | 1 2 | syl | ⊢ ( 𝑇  ∈  BndLinOp  →  ( adjℎ ‘ 𝑇 )  =  ( ℩ 𝑡  ∈  (  ℋ  ↑m   ℋ ) ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑡 ‘ 𝑥 )  ·ih  𝑦 ) ) ) | 
						
							| 4 |  | cnlnadj | ⊢ ( 𝑇  ∈  ( LinOp  ∩  ContOp )  →  ∃ 𝑡  ∈  ( LinOp  ∩  ContOp ) ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑦 )  =  ( 𝑥  ·ih  ( 𝑡 ‘ 𝑦 ) ) ) | 
						
							| 5 |  | lncnopbd | ⊢ ( 𝑇  ∈  ( LinOp  ∩  ContOp )  ↔  𝑇  ∈  BndLinOp ) | 
						
							| 6 |  | lncnbd | ⊢ ( LinOp  ∩  ContOp )  =  BndLinOp | 
						
							| 7 | 6 | rexeqi | ⊢ ( ∃ 𝑡  ∈  ( LinOp  ∩  ContOp ) ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑦 )  =  ( 𝑥  ·ih  ( 𝑡 ‘ 𝑦 ) )  ↔  ∃ 𝑡  ∈  BndLinOp ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑦 )  =  ( 𝑥  ·ih  ( 𝑡 ‘ 𝑦 ) ) ) | 
						
							| 8 | 4 5 7 | 3imtr3i | ⊢ ( 𝑇  ∈  BndLinOp  →  ∃ 𝑡  ∈  BndLinOp ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑦 )  =  ( 𝑥  ·ih  ( 𝑡 ‘ 𝑦 ) ) ) | 
						
							| 9 |  | bdopf | ⊢ ( 𝑇  ∈  BndLinOp  →  𝑇 :  ℋ ⟶  ℋ ) | 
						
							| 10 |  | bdopf | ⊢ ( 𝑡  ∈  BndLinOp  →  𝑡 :  ℋ ⟶  ℋ ) | 
						
							| 11 |  | adjsym | ⊢ ( ( 𝑇 :  ℋ ⟶  ℋ  ∧  𝑡 :  ℋ ⟶  ℋ )  →  ( ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑡 ‘ 𝑥 )  ·ih  𝑦 )  ↔  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑡 ‘ 𝑦 ) )  =  ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑦 ) ) ) | 
						
							| 12 | 9 10 11 | syl2an | ⊢ ( ( 𝑇  ∈  BndLinOp  ∧  𝑡  ∈  BndLinOp )  →  ( ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑡 ‘ 𝑥 )  ·ih  𝑦 )  ↔  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑡 ‘ 𝑦 ) )  =  ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑦 ) ) ) | 
						
							| 13 |  | eqcom | ⊢ ( ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑦 )  =  ( 𝑥  ·ih  ( 𝑡 ‘ 𝑦 ) )  ↔  ( 𝑥  ·ih  ( 𝑡 ‘ 𝑦 ) )  =  ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑦 ) ) | 
						
							| 14 | 13 | 2ralbii | ⊢ ( ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑦 )  =  ( 𝑥  ·ih  ( 𝑡 ‘ 𝑦 ) )  ↔  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑡 ‘ 𝑦 ) )  =  ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑦 ) ) | 
						
							| 15 | 12 14 | bitr4di | ⊢ ( ( 𝑇  ∈  BndLinOp  ∧  𝑡  ∈  BndLinOp )  →  ( ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑡 ‘ 𝑥 )  ·ih  𝑦 )  ↔  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑦 )  =  ( 𝑥  ·ih  ( 𝑡 ‘ 𝑦 ) ) ) ) | 
						
							| 16 | 15 | rexbidva | ⊢ ( 𝑇  ∈  BndLinOp  →  ( ∃ 𝑡  ∈  BndLinOp ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑡 ‘ 𝑥 )  ·ih  𝑦 )  ↔  ∃ 𝑡  ∈  BndLinOp ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑦 )  =  ( 𝑥  ·ih  ( 𝑡 ‘ 𝑦 ) ) ) ) | 
						
							| 17 | 8 16 | mpbird | ⊢ ( 𝑇  ∈  BndLinOp  →  ∃ 𝑡  ∈  BndLinOp ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑡 ‘ 𝑥 )  ·ih  𝑦 ) ) | 
						
							| 18 |  | adjeu | ⊢ ( 𝑇 :  ℋ ⟶  ℋ  →  ( 𝑇  ∈  dom  adjℎ  ↔  ∃! 𝑡  ∈  (  ℋ  ↑m   ℋ ) ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑡 ‘ 𝑥 )  ·ih  𝑦 ) ) ) | 
						
							| 19 | 9 18 | syl | ⊢ ( 𝑇  ∈  BndLinOp  →  ( 𝑇  ∈  dom  adjℎ  ↔  ∃! 𝑡  ∈  (  ℋ  ↑m   ℋ ) ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑡 ‘ 𝑥 )  ·ih  𝑦 ) ) ) | 
						
							| 20 | 1 19 | mpbid | ⊢ ( 𝑇  ∈  BndLinOp  →  ∃! 𝑡  ∈  (  ℋ  ↑m   ℋ ) ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑡 ‘ 𝑥 )  ·ih  𝑦 ) ) | 
						
							| 21 |  | ax-hilex | ⊢  ℋ  ∈  V | 
						
							| 22 | 21 21 | elmap | ⊢ ( 𝑡  ∈  (  ℋ  ↑m   ℋ )  ↔  𝑡 :  ℋ ⟶  ℋ ) | 
						
							| 23 | 10 22 | sylibr | ⊢ ( 𝑡  ∈  BndLinOp  →  𝑡  ∈  (  ℋ  ↑m   ℋ ) ) | 
						
							| 24 | 23 | ssriv | ⊢ BndLinOp  ⊆  (  ℋ  ↑m   ℋ ) | 
						
							| 25 |  | id | ⊢ ( ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑡 ‘ 𝑥 )  ·ih  𝑦 )  →  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑡 ‘ 𝑥 )  ·ih  𝑦 ) ) | 
						
							| 26 | 25 | rgenw | ⊢ ∀ 𝑡  ∈  BndLinOp ( ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑡 ‘ 𝑥 )  ·ih  𝑦 )  →  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑡 ‘ 𝑥 )  ·ih  𝑦 ) ) | 
						
							| 27 |  | riotass2 | ⊢ ( ( ( BndLinOp  ⊆  (  ℋ  ↑m   ℋ )  ∧  ∀ 𝑡  ∈  BndLinOp ( ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑡 ‘ 𝑥 )  ·ih  𝑦 )  →  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑡 ‘ 𝑥 )  ·ih  𝑦 ) ) )  ∧  ( ∃ 𝑡  ∈  BndLinOp ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑡 ‘ 𝑥 )  ·ih  𝑦 )  ∧  ∃! 𝑡  ∈  (  ℋ  ↑m   ℋ ) ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑡 ‘ 𝑥 )  ·ih  𝑦 ) ) )  →  ( ℩ 𝑡  ∈  BndLinOp ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑡 ‘ 𝑥 )  ·ih  𝑦 ) )  =  ( ℩ 𝑡  ∈  (  ℋ  ↑m   ℋ ) ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑡 ‘ 𝑥 )  ·ih  𝑦 ) ) ) | 
						
							| 28 | 24 26 27 | mpanl12 | ⊢ ( ( ∃ 𝑡  ∈  BndLinOp ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑡 ‘ 𝑥 )  ·ih  𝑦 )  ∧  ∃! 𝑡  ∈  (  ℋ  ↑m   ℋ ) ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑡 ‘ 𝑥 )  ·ih  𝑦 ) )  →  ( ℩ 𝑡  ∈  BndLinOp ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑡 ‘ 𝑥 )  ·ih  𝑦 ) )  =  ( ℩ 𝑡  ∈  (  ℋ  ↑m   ℋ ) ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑡 ‘ 𝑥 )  ·ih  𝑦 ) ) ) | 
						
							| 29 | 17 20 28 | syl2anc | ⊢ ( 𝑇  ∈  BndLinOp  →  ( ℩ 𝑡  ∈  BndLinOp ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑡 ‘ 𝑥 )  ·ih  𝑦 ) )  =  ( ℩ 𝑡  ∈  (  ℋ  ↑m   ℋ ) ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑡 ‘ 𝑥 )  ·ih  𝑦 ) ) ) | 
						
							| 30 | 3 29 | eqtr4d | ⊢ ( 𝑇  ∈  BndLinOp  →  ( adjℎ ‘ 𝑇 )  =  ( ℩ 𝑡  ∈  BndLinOp ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑡 ‘ 𝑥 )  ·ih  𝑦 ) ) ) | 
						
							| 31 | 24 | a1i | ⊢ ( 𝑇  ∈  BndLinOp  →  BndLinOp  ⊆  (  ℋ  ↑m   ℋ ) ) | 
						
							| 32 |  | reuss | ⊢ ( ( BndLinOp  ⊆  (  ℋ  ↑m   ℋ )  ∧  ∃ 𝑡  ∈  BndLinOp ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑡 ‘ 𝑥 )  ·ih  𝑦 )  ∧  ∃! 𝑡  ∈  (  ℋ  ↑m   ℋ ) ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑡 ‘ 𝑥 )  ·ih  𝑦 ) )  →  ∃! 𝑡  ∈  BndLinOp ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑡 ‘ 𝑥 )  ·ih  𝑦 ) ) | 
						
							| 33 | 31 17 20 32 | syl3anc | ⊢ ( 𝑇  ∈  BndLinOp  →  ∃! 𝑡  ∈  BndLinOp ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑡 ‘ 𝑥 )  ·ih  𝑦 ) ) | 
						
							| 34 |  | riotacl | ⊢ ( ∃! 𝑡  ∈  BndLinOp ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑡 ‘ 𝑥 )  ·ih  𝑦 )  →  ( ℩ 𝑡  ∈  BndLinOp ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑡 ‘ 𝑥 )  ·ih  𝑦 ) )  ∈  BndLinOp ) | 
						
							| 35 | 33 34 | syl | ⊢ ( 𝑇  ∈  BndLinOp  →  ( ℩ 𝑡  ∈  BndLinOp ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑡 ‘ 𝑥 )  ·ih  𝑦 ) )  ∈  BndLinOp ) | 
						
							| 36 | 30 35 | eqeltrd | ⊢ ( 𝑇  ∈  BndLinOp  →  ( adjℎ ‘ 𝑇 )  ∈  BndLinOp ) |