Step |
Hyp |
Ref |
Expression |
1 |
|
adjbdln |
⊢ ( 𝑇 ∈ BndLinOp → ( adjℎ ‘ 𝑇 ) ∈ BndLinOp ) |
2 |
|
bdopadj |
⊢ ( ( adjℎ ‘ 𝑇 ) ∈ BndLinOp → ( adjℎ ‘ 𝑇 ) ∈ dom adjℎ ) |
3 |
|
dmadjrnb |
⊢ ( 𝑇 ∈ dom adjℎ ↔ ( adjℎ ‘ 𝑇 ) ∈ dom adjℎ ) |
4 |
2 3
|
sylibr |
⊢ ( ( adjℎ ‘ 𝑇 ) ∈ BndLinOp → 𝑇 ∈ dom adjℎ ) |
5 |
|
cnvadj |
⊢ ◡ adjℎ = adjℎ |
6 |
5
|
fveq1i |
⊢ ( ◡ adjℎ ‘ ( adjℎ ‘ 𝑇 ) ) = ( adjℎ ‘ ( adjℎ ‘ 𝑇 ) ) |
7 |
|
adj1o |
⊢ adjℎ : dom adjℎ –1-1-onto→ dom adjℎ |
8 |
|
simpl |
⊢ ( ( 𝑇 ∈ dom adjℎ ∧ ( adjℎ ‘ 𝑇 ) ∈ BndLinOp ) → 𝑇 ∈ dom adjℎ ) |
9 |
|
f1ocnvfv1 |
⊢ ( ( adjℎ : dom adjℎ –1-1-onto→ dom adjℎ ∧ 𝑇 ∈ dom adjℎ ) → ( ◡ adjℎ ‘ ( adjℎ ‘ 𝑇 ) ) = 𝑇 ) |
10 |
7 8 9
|
sylancr |
⊢ ( ( 𝑇 ∈ dom adjℎ ∧ ( adjℎ ‘ 𝑇 ) ∈ BndLinOp ) → ( ◡ adjℎ ‘ ( adjℎ ‘ 𝑇 ) ) = 𝑇 ) |
11 |
6 10
|
eqtr3id |
⊢ ( ( 𝑇 ∈ dom adjℎ ∧ ( adjℎ ‘ 𝑇 ) ∈ BndLinOp ) → ( adjℎ ‘ ( adjℎ ‘ 𝑇 ) ) = 𝑇 ) |
12 |
|
adjbdln |
⊢ ( ( adjℎ ‘ 𝑇 ) ∈ BndLinOp → ( adjℎ ‘ ( adjℎ ‘ 𝑇 ) ) ∈ BndLinOp ) |
13 |
12
|
adantl |
⊢ ( ( 𝑇 ∈ dom adjℎ ∧ ( adjℎ ‘ 𝑇 ) ∈ BndLinOp ) → ( adjℎ ‘ ( adjℎ ‘ 𝑇 ) ) ∈ BndLinOp ) |
14 |
11 13
|
eqeltrrd |
⊢ ( ( 𝑇 ∈ dom adjℎ ∧ ( adjℎ ‘ 𝑇 ) ∈ BndLinOp ) → 𝑇 ∈ BndLinOp ) |
15 |
4 14
|
mpancom |
⊢ ( ( adjℎ ‘ 𝑇 ) ∈ BndLinOp → 𝑇 ∈ BndLinOp ) |
16 |
1 15
|
impbii |
⊢ ( 𝑇 ∈ BndLinOp ↔ ( adjℎ ‘ 𝑇 ) ∈ BndLinOp ) |