| Step | Hyp | Ref | Expression | 
						
							| 1 |  | adjbdln | ⊢ ( 𝑇  ∈  BndLinOp  →  ( adjℎ ‘ 𝑇 )  ∈  BndLinOp ) | 
						
							| 2 |  | bdopadj | ⊢ ( ( adjℎ ‘ 𝑇 )  ∈  BndLinOp  →  ( adjℎ ‘ 𝑇 )  ∈  dom  adjℎ ) | 
						
							| 3 |  | dmadjrnb | ⊢ ( 𝑇  ∈  dom  adjℎ  ↔  ( adjℎ ‘ 𝑇 )  ∈  dom  adjℎ ) | 
						
							| 4 | 2 3 | sylibr | ⊢ ( ( adjℎ ‘ 𝑇 )  ∈  BndLinOp  →  𝑇  ∈  dom  adjℎ ) | 
						
							| 5 |  | cnvadj | ⊢ ◡ adjℎ  =  adjℎ | 
						
							| 6 | 5 | fveq1i | ⊢ ( ◡ adjℎ ‘ ( adjℎ ‘ 𝑇 ) )  =  ( adjℎ ‘ ( adjℎ ‘ 𝑇 ) ) | 
						
							| 7 |  | adj1o | ⊢ adjℎ : dom  adjℎ –1-1-onto→ dom  adjℎ | 
						
							| 8 |  | simpl | ⊢ ( ( 𝑇  ∈  dom  adjℎ  ∧  ( adjℎ ‘ 𝑇 )  ∈  BndLinOp )  →  𝑇  ∈  dom  adjℎ ) | 
						
							| 9 |  | f1ocnvfv1 | ⊢ ( ( adjℎ : dom  adjℎ –1-1-onto→ dom  adjℎ  ∧  𝑇  ∈  dom  adjℎ )  →  ( ◡ adjℎ ‘ ( adjℎ ‘ 𝑇 ) )  =  𝑇 ) | 
						
							| 10 | 7 8 9 | sylancr | ⊢ ( ( 𝑇  ∈  dom  adjℎ  ∧  ( adjℎ ‘ 𝑇 )  ∈  BndLinOp )  →  ( ◡ adjℎ ‘ ( adjℎ ‘ 𝑇 ) )  =  𝑇 ) | 
						
							| 11 | 6 10 | eqtr3id | ⊢ ( ( 𝑇  ∈  dom  adjℎ  ∧  ( adjℎ ‘ 𝑇 )  ∈  BndLinOp )  →  ( adjℎ ‘ ( adjℎ ‘ 𝑇 ) )  =  𝑇 ) | 
						
							| 12 |  | adjbdln | ⊢ ( ( adjℎ ‘ 𝑇 )  ∈  BndLinOp  →  ( adjℎ ‘ ( adjℎ ‘ 𝑇 ) )  ∈  BndLinOp ) | 
						
							| 13 | 12 | adantl | ⊢ ( ( 𝑇  ∈  dom  adjℎ  ∧  ( adjℎ ‘ 𝑇 )  ∈  BndLinOp )  →  ( adjℎ ‘ ( adjℎ ‘ 𝑇 ) )  ∈  BndLinOp ) | 
						
							| 14 | 11 13 | eqeltrrd | ⊢ ( ( 𝑇  ∈  dom  adjℎ  ∧  ( adjℎ ‘ 𝑇 )  ∈  BndLinOp )  →  𝑇  ∈  BndLinOp ) | 
						
							| 15 | 4 14 | mpancom | ⊢ ( ( adjℎ ‘ 𝑇 )  ∈  BndLinOp  →  𝑇  ∈  BndLinOp ) | 
						
							| 16 | 1 15 | impbii | ⊢ ( 𝑇  ∈  BndLinOp  ↔  ( adjℎ ‘ 𝑇 )  ∈  BndLinOp ) |