Metamath Proof Explorer


Theorem adjcl

Description: Closure of the adjoint of a Hilbert space operator. (Contributed by NM, 17-Jun-2006) (New usage is discouraged.)

Ref Expression
Assertion adjcl ( ( 𝑇 ∈ dom adj𝐴 ∈ ℋ ) → ( ( adj𝑇 ) ‘ 𝐴 ) ∈ ℋ )

Proof

Step Hyp Ref Expression
1 dmadjrn ( 𝑇 ∈ dom adj → ( adj𝑇 ) ∈ dom adj )
2 dmadjop ( ( adj𝑇 ) ∈ dom adj → ( adj𝑇 ) : ℋ ⟶ ℋ )
3 1 2 syl ( 𝑇 ∈ dom adj → ( adj𝑇 ) : ℋ ⟶ ℋ )
4 3 ffvelrnda ( ( 𝑇 ∈ dom adj𝐴 ∈ ℋ ) → ( ( adj𝑇 ) ‘ 𝐴 ) ∈ ℋ )