Description: Closure of the adjoint of a Hilbert space operator. (Contributed by NM, 17-Jun-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | adjcl | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ ) → ( ( adjℎ ‘ 𝑇 ) ‘ 𝐴 ) ∈ ℋ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmadjrn | ⊢ ( 𝑇 ∈ dom adjℎ → ( adjℎ ‘ 𝑇 ) ∈ dom adjℎ ) | |
| 2 | dmadjop | ⊢ ( ( adjℎ ‘ 𝑇 ) ∈ dom adjℎ → ( adjℎ ‘ 𝑇 ) : ℋ ⟶ ℋ ) | |
| 3 | 1 2 | syl | ⊢ ( 𝑇 ∈ dom adjℎ → ( adjℎ ‘ 𝑇 ) : ℋ ⟶ ℋ ) |
| 4 | 3 | ffvelcdmda | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ ) → ( ( adjℎ ‘ 𝑇 ) ‘ 𝐴 ) ∈ ℋ ) |