Step |
Hyp |
Ref |
Expression |
1 |
|
nmoptri.1 |
⊢ 𝑆 ∈ BndLinOp |
2 |
|
nmoptri.2 |
⊢ 𝑇 ∈ BndLinOp |
3 |
|
adjbdln |
⊢ ( 𝑇 ∈ BndLinOp → ( adjℎ ‘ 𝑇 ) ∈ BndLinOp ) |
4 |
|
bdopf |
⊢ ( ( adjℎ ‘ 𝑇 ) ∈ BndLinOp → ( adjℎ ‘ 𝑇 ) : ℋ ⟶ ℋ ) |
5 |
2 3 4
|
mp2b |
⊢ ( adjℎ ‘ 𝑇 ) : ℋ ⟶ ℋ |
6 |
|
adjbdln |
⊢ ( 𝑆 ∈ BndLinOp → ( adjℎ ‘ 𝑆 ) ∈ BndLinOp ) |
7 |
|
bdopf |
⊢ ( ( adjℎ ‘ 𝑆 ) ∈ BndLinOp → ( adjℎ ‘ 𝑆 ) : ℋ ⟶ ℋ ) |
8 |
1 6 7
|
mp2b |
⊢ ( adjℎ ‘ 𝑆 ) : ℋ ⟶ ℋ |
9 |
5 8
|
hocoi |
⊢ ( 𝑦 ∈ ℋ → ( ( ( adjℎ ‘ 𝑇 ) ∘ ( adjℎ ‘ 𝑆 ) ) ‘ 𝑦 ) = ( ( adjℎ ‘ 𝑇 ) ‘ ( ( adjℎ ‘ 𝑆 ) ‘ 𝑦 ) ) ) |
10 |
9
|
oveq2d |
⊢ ( 𝑦 ∈ ℋ → ( 𝑥 ·ih ( ( ( adjℎ ‘ 𝑇 ) ∘ ( adjℎ ‘ 𝑆 ) ) ‘ 𝑦 ) ) = ( 𝑥 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ ( ( adjℎ ‘ 𝑆 ) ‘ 𝑦 ) ) ) ) |
11 |
10
|
adantl |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ih ( ( ( adjℎ ‘ 𝑇 ) ∘ ( adjℎ ‘ 𝑆 ) ) ‘ 𝑦 ) ) = ( 𝑥 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ ( ( adjℎ ‘ 𝑆 ) ‘ 𝑦 ) ) ) ) |
12 |
|
bdopf |
⊢ ( 𝑆 ∈ BndLinOp → 𝑆 : ℋ ⟶ ℋ ) |
13 |
1 12
|
ax-mp |
⊢ 𝑆 : ℋ ⟶ ℋ |
14 |
|
bdopf |
⊢ ( 𝑇 ∈ BndLinOp → 𝑇 : ℋ ⟶ ℋ ) |
15 |
2 14
|
ax-mp |
⊢ 𝑇 : ℋ ⟶ ℋ |
16 |
13 15
|
hocoi |
⊢ ( 𝑥 ∈ ℋ → ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) = ( 𝑆 ‘ ( 𝑇 ‘ 𝑥 ) ) ) |
17 |
16
|
oveq1d |
⊢ ( 𝑥 ∈ ℋ → ( ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) = ( ( 𝑆 ‘ ( 𝑇 ‘ 𝑥 ) ) ·ih 𝑦 ) ) |
18 |
17
|
adantr |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) = ( ( 𝑆 ‘ ( 𝑇 ‘ 𝑥 ) ) ·ih 𝑦 ) ) |
19 |
15
|
ffvelrni |
⊢ ( 𝑥 ∈ ℋ → ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) |
20 |
|
bdopadj |
⊢ ( 𝑆 ∈ BndLinOp → 𝑆 ∈ dom adjℎ ) |
21 |
1 20
|
ax-mp |
⊢ 𝑆 ∈ dom adjℎ |
22 |
|
adj2 |
⊢ ( ( 𝑆 ∈ dom adjℎ ∧ ( 𝑇 ‘ 𝑥 ) ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑆 ‘ ( 𝑇 ‘ 𝑥 ) ) ·ih 𝑦 ) = ( ( 𝑇 ‘ 𝑥 ) ·ih ( ( adjℎ ‘ 𝑆 ) ‘ 𝑦 ) ) ) |
23 |
21 22
|
mp3an1 |
⊢ ( ( ( 𝑇 ‘ 𝑥 ) ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑆 ‘ ( 𝑇 ‘ 𝑥 ) ) ·ih 𝑦 ) = ( ( 𝑇 ‘ 𝑥 ) ·ih ( ( adjℎ ‘ 𝑆 ) ‘ 𝑦 ) ) ) |
24 |
19 23
|
sylan |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑆 ‘ ( 𝑇 ‘ 𝑥 ) ) ·ih 𝑦 ) = ( ( 𝑇 ‘ 𝑥 ) ·ih ( ( adjℎ ‘ 𝑆 ) ‘ 𝑦 ) ) ) |
25 |
8
|
ffvelrni |
⊢ ( 𝑦 ∈ ℋ → ( ( adjℎ ‘ 𝑆 ) ‘ 𝑦 ) ∈ ℋ ) |
26 |
|
bdopadj |
⊢ ( 𝑇 ∈ BndLinOp → 𝑇 ∈ dom adjℎ ) |
27 |
2 26
|
ax-mp |
⊢ 𝑇 ∈ dom adjℎ |
28 |
|
adj2 |
⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝑥 ∈ ℋ ∧ ( ( adjℎ ‘ 𝑆 ) ‘ 𝑦 ) ∈ ℋ ) → ( ( 𝑇 ‘ 𝑥 ) ·ih ( ( adjℎ ‘ 𝑆 ) ‘ 𝑦 ) ) = ( 𝑥 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ ( ( adjℎ ‘ 𝑆 ) ‘ 𝑦 ) ) ) ) |
29 |
27 28
|
mp3an1 |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( ( adjℎ ‘ 𝑆 ) ‘ 𝑦 ) ∈ ℋ ) → ( ( 𝑇 ‘ 𝑥 ) ·ih ( ( adjℎ ‘ 𝑆 ) ‘ 𝑦 ) ) = ( 𝑥 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ ( ( adjℎ ‘ 𝑆 ) ‘ 𝑦 ) ) ) ) |
30 |
25 29
|
sylan2 |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑥 ) ·ih ( ( adjℎ ‘ 𝑆 ) ‘ 𝑦 ) ) = ( 𝑥 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ ( ( adjℎ ‘ 𝑆 ) ‘ 𝑦 ) ) ) ) |
31 |
18 24 30
|
3eqtrd |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ ( ( adjℎ ‘ 𝑆 ) ‘ 𝑦 ) ) ) ) |
32 |
1 2
|
bdopcoi |
⊢ ( 𝑆 ∘ 𝑇 ) ∈ BndLinOp |
33 |
|
bdopadj |
⊢ ( ( 𝑆 ∘ 𝑇 ) ∈ BndLinOp → ( 𝑆 ∘ 𝑇 ) ∈ dom adjℎ ) |
34 |
32 33
|
ax-mp |
⊢ ( 𝑆 ∘ 𝑇 ) ∈ dom adjℎ |
35 |
|
adj2 |
⊢ ( ( ( 𝑆 ∘ 𝑇 ) ∈ dom adjℎ ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( ( adjℎ ‘ ( 𝑆 ∘ 𝑇 ) ) ‘ 𝑦 ) ) ) |
36 |
34 35
|
mp3an1 |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( ( adjℎ ‘ ( 𝑆 ∘ 𝑇 ) ) ‘ 𝑦 ) ) ) |
37 |
11 31 36
|
3eqtr2rd |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ih ( ( adjℎ ‘ ( 𝑆 ∘ 𝑇 ) ) ‘ 𝑦 ) ) = ( 𝑥 ·ih ( ( ( adjℎ ‘ 𝑇 ) ∘ ( adjℎ ‘ 𝑆 ) ) ‘ 𝑦 ) ) ) |
38 |
37
|
rgen2 |
⊢ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( ( adjℎ ‘ ( 𝑆 ∘ 𝑇 ) ) ‘ 𝑦 ) ) = ( 𝑥 ·ih ( ( ( adjℎ ‘ 𝑇 ) ∘ ( adjℎ ‘ 𝑆 ) ) ‘ 𝑦 ) ) |
39 |
|
adjbdln |
⊢ ( ( 𝑆 ∘ 𝑇 ) ∈ BndLinOp → ( adjℎ ‘ ( 𝑆 ∘ 𝑇 ) ) ∈ BndLinOp ) |
40 |
|
bdopf |
⊢ ( ( adjℎ ‘ ( 𝑆 ∘ 𝑇 ) ) ∈ BndLinOp → ( adjℎ ‘ ( 𝑆 ∘ 𝑇 ) ) : ℋ ⟶ ℋ ) |
41 |
32 39 40
|
mp2b |
⊢ ( adjℎ ‘ ( 𝑆 ∘ 𝑇 ) ) : ℋ ⟶ ℋ |
42 |
5 8
|
hocofi |
⊢ ( ( adjℎ ‘ 𝑇 ) ∘ ( adjℎ ‘ 𝑆 ) ) : ℋ ⟶ ℋ |
43 |
|
hoeq2 |
⊢ ( ( ( adjℎ ‘ ( 𝑆 ∘ 𝑇 ) ) : ℋ ⟶ ℋ ∧ ( ( adjℎ ‘ 𝑇 ) ∘ ( adjℎ ‘ 𝑆 ) ) : ℋ ⟶ ℋ ) → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( ( adjℎ ‘ ( 𝑆 ∘ 𝑇 ) ) ‘ 𝑦 ) ) = ( 𝑥 ·ih ( ( ( adjℎ ‘ 𝑇 ) ∘ ( adjℎ ‘ 𝑆 ) ) ‘ 𝑦 ) ) ↔ ( adjℎ ‘ ( 𝑆 ∘ 𝑇 ) ) = ( ( adjℎ ‘ 𝑇 ) ∘ ( adjℎ ‘ 𝑆 ) ) ) ) |
44 |
41 42 43
|
mp2an |
⊢ ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( ( adjℎ ‘ ( 𝑆 ∘ 𝑇 ) ) ‘ 𝑦 ) ) = ( 𝑥 ·ih ( ( ( adjℎ ‘ 𝑇 ) ∘ ( adjℎ ‘ 𝑆 ) ) ‘ 𝑦 ) ) ↔ ( adjℎ ‘ ( 𝑆 ∘ 𝑇 ) ) = ( ( adjℎ ‘ 𝑇 ) ∘ ( adjℎ ‘ 𝑆 ) ) ) |
45 |
38 44
|
mpbi |
⊢ ( adjℎ ‘ ( 𝑆 ∘ 𝑇 ) ) = ( ( adjℎ ‘ 𝑇 ) ∘ ( adjℎ ‘ 𝑆 ) ) |