Step |
Hyp |
Ref |
Expression |
1 |
|
funadj |
⊢ Fun adjℎ |
2 |
|
df-adjh |
⊢ adjℎ = { 〈 𝑧 , 𝑤 〉 ∣ ( 𝑧 : ℋ ⟶ ℋ ∧ 𝑤 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑧 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑤 ‘ 𝑦 ) ) ) } |
3 |
2
|
eleq2i |
⊢ ( 〈 𝑇 , 𝑆 〉 ∈ adjℎ ↔ 〈 𝑇 , 𝑆 〉 ∈ { 〈 𝑧 , 𝑤 〉 ∣ ( 𝑧 : ℋ ⟶ ℋ ∧ 𝑤 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑧 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑤 ‘ 𝑦 ) ) ) } ) |
4 |
|
ax-hilex |
⊢ ℋ ∈ V |
5 |
|
fex |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ ℋ ∈ V ) → 𝑇 ∈ V ) |
6 |
4 5
|
mpan2 |
⊢ ( 𝑇 : ℋ ⟶ ℋ → 𝑇 ∈ V ) |
7 |
|
fex |
⊢ ( ( 𝑆 : ℋ ⟶ ℋ ∧ ℋ ∈ V ) → 𝑆 ∈ V ) |
8 |
4 7
|
mpan2 |
⊢ ( 𝑆 : ℋ ⟶ ℋ → 𝑆 ∈ V ) |
9 |
|
feq1 |
⊢ ( 𝑧 = 𝑇 → ( 𝑧 : ℋ ⟶ ℋ ↔ 𝑇 : ℋ ⟶ ℋ ) ) |
10 |
|
fveq1 |
⊢ ( 𝑧 = 𝑇 → ( 𝑧 ‘ 𝑥 ) = ( 𝑇 ‘ 𝑥 ) ) |
11 |
10
|
oveq1d |
⊢ ( 𝑧 = 𝑇 → ( ( 𝑧 ‘ 𝑥 ) ·ih 𝑦 ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ) |
12 |
11
|
eqeq1d |
⊢ ( 𝑧 = 𝑇 → ( ( ( 𝑧 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑤 ‘ 𝑦 ) ) ↔ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑤 ‘ 𝑦 ) ) ) ) |
13 |
12
|
2ralbidv |
⊢ ( 𝑧 = 𝑇 → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑧 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑤 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑤 ‘ 𝑦 ) ) ) ) |
14 |
9 13
|
3anbi13d |
⊢ ( 𝑧 = 𝑇 → ( ( 𝑧 : ℋ ⟶ ℋ ∧ 𝑤 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑧 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑤 ‘ 𝑦 ) ) ) ↔ ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑤 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑤 ‘ 𝑦 ) ) ) ) ) |
15 |
|
feq1 |
⊢ ( 𝑤 = 𝑆 → ( 𝑤 : ℋ ⟶ ℋ ↔ 𝑆 : ℋ ⟶ ℋ ) ) |
16 |
|
fveq1 |
⊢ ( 𝑤 = 𝑆 → ( 𝑤 ‘ 𝑦 ) = ( 𝑆 ‘ 𝑦 ) ) |
17 |
16
|
oveq2d |
⊢ ( 𝑤 = 𝑆 → ( 𝑥 ·ih ( 𝑤 ‘ 𝑦 ) ) = ( 𝑥 ·ih ( 𝑆 ‘ 𝑦 ) ) ) |
18 |
17
|
eqeq2d |
⊢ ( 𝑤 = 𝑆 → ( ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑤 ‘ 𝑦 ) ) ↔ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑆 ‘ 𝑦 ) ) ) ) |
19 |
18
|
2ralbidv |
⊢ ( 𝑤 = 𝑆 → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑤 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑆 ‘ 𝑦 ) ) ) ) |
20 |
15 19
|
3anbi23d |
⊢ ( 𝑤 = 𝑆 → ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑤 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑤 ‘ 𝑦 ) ) ) ↔ ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑆 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑆 ‘ 𝑦 ) ) ) ) ) |
21 |
14 20
|
opelopabg |
⊢ ( ( 𝑇 ∈ V ∧ 𝑆 ∈ V ) → ( 〈 𝑇 , 𝑆 〉 ∈ { 〈 𝑧 , 𝑤 〉 ∣ ( 𝑧 : ℋ ⟶ ℋ ∧ 𝑤 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑧 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑤 ‘ 𝑦 ) ) ) } ↔ ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑆 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑆 ‘ 𝑦 ) ) ) ) ) |
22 |
6 8 21
|
syl2an |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑆 : ℋ ⟶ ℋ ) → ( 〈 𝑇 , 𝑆 〉 ∈ { 〈 𝑧 , 𝑤 〉 ∣ ( 𝑧 : ℋ ⟶ ℋ ∧ 𝑤 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑧 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑤 ‘ 𝑦 ) ) ) } ↔ ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑆 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑆 ‘ 𝑦 ) ) ) ) ) |
23 |
3 22
|
syl5bb |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑆 : ℋ ⟶ ℋ ) → ( 〈 𝑇 , 𝑆 〉 ∈ adjℎ ↔ ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑆 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑆 ‘ 𝑦 ) ) ) ) ) |
24 |
|
df-3an |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑆 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑆 ‘ 𝑦 ) ) ) ↔ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑆 : ℋ ⟶ ℋ ) ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑆 ‘ 𝑦 ) ) ) ) |
25 |
24
|
baibr |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑆 : ℋ ⟶ ℋ ) → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑆 ‘ 𝑦 ) ) ↔ ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑆 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑆 ‘ 𝑦 ) ) ) ) ) |
26 |
23 25
|
bitr4d |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑆 : ℋ ⟶ ℋ ) → ( 〈 𝑇 , 𝑆 〉 ∈ adjℎ ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑆 ‘ 𝑦 ) ) ) ) |
27 |
26
|
biimp3ar |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑆 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑆 ‘ 𝑦 ) ) ) → 〈 𝑇 , 𝑆 〉 ∈ adjℎ ) |
28 |
|
funopfv |
⊢ ( Fun adjℎ → ( 〈 𝑇 , 𝑆 〉 ∈ adjℎ → ( adjℎ ‘ 𝑇 ) = 𝑆 ) ) |
29 |
1 27 28
|
mpsyl |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑆 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑆 ‘ 𝑦 ) ) ) → ( adjℎ ‘ 𝑇 ) = 𝑆 ) |