Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
⊢ ( 𝑇 = 0hop → ( adjℎ ‘ 𝑇 ) = ( adjℎ ‘ 0hop ) ) |
2 |
|
adj0 |
⊢ ( adjℎ ‘ 0hop ) = 0hop |
3 |
1 2
|
eqtrdi |
⊢ ( 𝑇 = 0hop → ( adjℎ ‘ 𝑇 ) = 0hop ) |
4 |
|
fveq2 |
⊢ ( ( adjℎ ‘ 𝑇 ) = 0hop → ( adjℎ ‘ ( adjℎ ‘ 𝑇 ) ) = ( adjℎ ‘ 0hop ) ) |
5 |
|
bdopssadj |
⊢ BndLinOp ⊆ dom adjℎ |
6 |
|
0bdop |
⊢ 0hop ∈ BndLinOp |
7 |
5 6
|
sselii |
⊢ 0hop ∈ dom adjℎ |
8 |
|
eleq1 |
⊢ ( ( adjℎ ‘ 𝑇 ) = 0hop → ( ( adjℎ ‘ 𝑇 ) ∈ dom adjℎ ↔ 0hop ∈ dom adjℎ ) ) |
9 |
7 8
|
mpbiri |
⊢ ( ( adjℎ ‘ 𝑇 ) = 0hop → ( adjℎ ‘ 𝑇 ) ∈ dom adjℎ ) |
10 |
|
dmadjrnb |
⊢ ( 𝑇 ∈ dom adjℎ ↔ ( adjℎ ‘ 𝑇 ) ∈ dom adjℎ ) |
11 |
9 10
|
sylibr |
⊢ ( ( adjℎ ‘ 𝑇 ) = 0hop → 𝑇 ∈ dom adjℎ ) |
12 |
|
adjadj |
⊢ ( 𝑇 ∈ dom adjℎ → ( adjℎ ‘ ( adjℎ ‘ 𝑇 ) ) = 𝑇 ) |
13 |
11 12
|
syl |
⊢ ( ( adjℎ ‘ 𝑇 ) = 0hop → ( adjℎ ‘ ( adjℎ ‘ 𝑇 ) ) = 𝑇 ) |
14 |
2
|
a1i |
⊢ ( ( adjℎ ‘ 𝑇 ) = 0hop → ( adjℎ ‘ 0hop ) = 0hop ) |
15 |
4 13 14
|
3eqtr3d |
⊢ ( ( adjℎ ‘ 𝑇 ) = 0hop → 𝑇 = 0hop ) |
16 |
3 15
|
impbii |
⊢ ( 𝑇 = 0hop ↔ ( adjℎ ‘ 𝑇 ) = 0hop ) |