Metamath Proof Explorer


Theorem adjeq0

Description: An operator is zero iff its adjoint is zero. Theorem 3.11(i) of Beran p. 106. (Contributed by NM, 20-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion adjeq0 ( 𝑇 = 0hop ↔ ( adj𝑇 ) = 0hop )

Proof

Step Hyp Ref Expression
1 fveq2 ( 𝑇 = 0hop → ( adj𝑇 ) = ( adj ‘ 0hop ) )
2 adj0 ( adj ‘ 0hop ) = 0hop
3 1 2 eqtrdi ( 𝑇 = 0hop → ( adj𝑇 ) = 0hop )
4 fveq2 ( ( adj𝑇 ) = 0hop → ( adj ‘ ( adj𝑇 ) ) = ( adj ‘ 0hop ) )
5 bdopssadj BndLinOp ⊆ dom adj
6 0bdop 0hop ∈ BndLinOp
7 5 6 sselii 0hop ∈ dom adj
8 eleq1 ( ( adj𝑇 ) = 0hop → ( ( adj𝑇 ) ∈ dom adj ↔ 0hop ∈ dom adj ) )
9 7 8 mpbiri ( ( adj𝑇 ) = 0hop → ( adj𝑇 ) ∈ dom adj )
10 dmadjrnb ( 𝑇 ∈ dom adj ↔ ( adj𝑇 ) ∈ dom adj )
11 9 10 sylibr ( ( adj𝑇 ) = 0hop𝑇 ∈ dom adj )
12 adjadj ( 𝑇 ∈ dom adj → ( adj ‘ ( adj𝑇 ) ) = 𝑇 )
13 11 12 syl ( ( adj𝑇 ) = 0hop → ( adj ‘ ( adj𝑇 ) ) = 𝑇 )
14 2 a1i ( ( adj𝑇 ) = 0hop → ( adj ‘ 0hop ) = 0hop )
15 4 13 14 3eqtr3d ( ( adj𝑇 ) = 0hop𝑇 = 0hop )
16 3 15 impbii ( 𝑇 = 0hop ↔ ( adj𝑇 ) = 0hop )