| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ax-hilex | ⊢  ℋ  ∈  V | 
						
							| 2 |  | fex2 | ⊢ ( ( 𝑇 :  ℋ ⟶  ℋ  ∧   ℋ  ∈  V  ∧   ℋ  ∈  V )  →  𝑇  ∈  V ) | 
						
							| 3 | 1 1 2 | mp3an23 | ⊢ ( 𝑇 :  ℋ ⟶  ℋ  →  𝑇  ∈  V ) | 
						
							| 4 |  | feq1 | ⊢ ( 𝑡  =  𝑇  →  ( 𝑡 :  ℋ ⟶  ℋ  ↔  𝑇 :  ℋ ⟶  ℋ ) ) | 
						
							| 5 |  | fveq1 | ⊢ ( 𝑡  =  𝑇  →  ( 𝑡 ‘ 𝑦 )  =  ( 𝑇 ‘ 𝑦 ) ) | 
						
							| 6 | 5 | oveq2d | ⊢ ( 𝑡  =  𝑇  →  ( 𝑥  ·ih  ( 𝑡 ‘ 𝑦 ) )  =  ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) ) ) | 
						
							| 7 | 6 | eqeq1d | ⊢ ( 𝑡  =  𝑇  →  ( ( 𝑥  ·ih  ( 𝑡 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 )  ↔  ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) ) ) | 
						
							| 8 | 7 | 2ralbidv | ⊢ ( 𝑡  =  𝑇  →  ( ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑡 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 )  ↔  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) ) ) | 
						
							| 9 | 4 8 | 3anbi13d | ⊢ ( 𝑡  =  𝑇  →  ( ( 𝑡 :  ℋ ⟶  ℋ  ∧  𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑡 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) )  ↔  ( 𝑇 :  ℋ ⟶  ℋ  ∧  𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) ) ) ) | 
						
							| 10 |  | 3anass | ⊢ ( ( 𝑇 :  ℋ ⟶  ℋ  ∧  𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) )  ↔  ( 𝑇 :  ℋ ⟶  ℋ  ∧  ( 𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) ) ) ) | 
						
							| 11 | 9 10 | bitrdi | ⊢ ( 𝑡  =  𝑇  →  ( ( 𝑡 :  ℋ ⟶  ℋ  ∧  𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑡 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) )  ↔  ( 𝑇 :  ℋ ⟶  ℋ  ∧  ( 𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) ) ) ) ) | 
						
							| 12 | 11 | exbidv | ⊢ ( 𝑡  =  𝑇  →  ( ∃ 𝑢 ( 𝑡 :  ℋ ⟶  ℋ  ∧  𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑡 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) )  ↔  ∃ 𝑢 ( 𝑇 :  ℋ ⟶  ℋ  ∧  ( 𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) ) ) ) ) | 
						
							| 13 |  | 19.42v | ⊢ ( ∃ 𝑢 ( 𝑇 :  ℋ ⟶  ℋ  ∧  ( 𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) ) )  ↔  ( 𝑇 :  ℋ ⟶  ℋ  ∧  ∃ 𝑢 ( 𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) ) ) ) | 
						
							| 14 | 12 13 | bitrdi | ⊢ ( 𝑡  =  𝑇  →  ( ∃ 𝑢 ( 𝑡 :  ℋ ⟶  ℋ  ∧  𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑡 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) )  ↔  ( 𝑇 :  ℋ ⟶  ℋ  ∧  ∃ 𝑢 ( 𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) ) ) ) ) | 
						
							| 15 |  | dfadj2 | ⊢ adjℎ  =  { 〈 𝑡 ,  𝑢 〉  ∣  ( 𝑡 :  ℋ ⟶  ℋ  ∧  𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑡 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) ) } | 
						
							| 16 | 15 | dmeqi | ⊢ dom  adjℎ  =  dom  { 〈 𝑡 ,  𝑢 〉  ∣  ( 𝑡 :  ℋ ⟶  ℋ  ∧  𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑡 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) ) } | 
						
							| 17 |  | dmopab | ⊢ dom  { 〈 𝑡 ,  𝑢 〉  ∣  ( 𝑡 :  ℋ ⟶  ℋ  ∧  𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑡 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) ) }  =  { 𝑡  ∣  ∃ 𝑢 ( 𝑡 :  ℋ ⟶  ℋ  ∧  𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑡 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) ) } | 
						
							| 18 | 16 17 | eqtri | ⊢ dom  adjℎ  =  { 𝑡  ∣  ∃ 𝑢 ( 𝑡 :  ℋ ⟶  ℋ  ∧  𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑡 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) ) } | 
						
							| 19 | 14 18 | elab2g | ⊢ ( 𝑇  ∈  V  →  ( 𝑇  ∈  dom  adjℎ  ↔  ( 𝑇 :  ℋ ⟶  ℋ  ∧  ∃ 𝑢 ( 𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) ) ) ) ) | 
						
							| 20 | 19 | baibd | ⊢ ( ( 𝑇  ∈  V  ∧  𝑇 :  ℋ ⟶  ℋ )  →  ( 𝑇  ∈  dom  adjℎ  ↔  ∃ 𝑢 ( 𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) ) ) ) | 
						
							| 21 | 3 20 | mpancom | ⊢ ( 𝑇 :  ℋ ⟶  ℋ  →  ( 𝑇  ∈  dom  adjℎ  ↔  ∃ 𝑢 ( 𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) ) ) ) | 
						
							| 22 |  | df-reu | ⊢ ( ∃! 𝑢  ∈  (  ℋ  ↑m   ℋ ) ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 )  ↔  ∃! 𝑢 ( 𝑢  ∈  (  ℋ  ↑m   ℋ )  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) ) ) | 
						
							| 23 | 1 1 | elmap | ⊢ ( 𝑢  ∈  (  ℋ  ↑m   ℋ )  ↔  𝑢 :  ℋ ⟶  ℋ ) | 
						
							| 24 | 23 | anbi1i | ⊢ ( ( 𝑢  ∈  (  ℋ  ↑m   ℋ )  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) )  ↔  ( 𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) ) ) | 
						
							| 25 | 24 | eubii | ⊢ ( ∃! 𝑢 ( 𝑢  ∈  (  ℋ  ↑m   ℋ )  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) )  ↔  ∃! 𝑢 ( 𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) ) ) | 
						
							| 26 |  | adjmo | ⊢ ∃* 𝑢 ( 𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) ) | 
						
							| 27 |  | df-eu | ⊢ ( ∃! 𝑢 ( 𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) )  ↔  ( ∃ 𝑢 ( 𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) )  ∧  ∃* 𝑢 ( 𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) ) ) ) | 
						
							| 28 | 26 27 | mpbiran2 | ⊢ ( ∃! 𝑢 ( 𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) )  ↔  ∃ 𝑢 ( 𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) ) ) | 
						
							| 29 | 22 25 28 | 3bitri | ⊢ ( ∃! 𝑢  ∈  (  ℋ  ↑m   ℋ ) ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 )  ↔  ∃ 𝑢 ( 𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) ) ) | 
						
							| 30 | 21 29 | bitr4di | ⊢ ( 𝑇 :  ℋ ⟶  ℋ  →  ( 𝑇  ∈  dom  adjℎ  ↔  ∃! 𝑢  ∈  (  ℋ  ↑m   ℋ ) ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) ) ) |