Metamath Proof Explorer


Theorem adjmo

Description: Every Hilbert space operator has at most one adjoint. (Contributed by NM, 18-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion adjmo ∃* 𝑢 ( 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑢𝑥 ) ·ih 𝑦 ) )

Proof

Step Hyp Ref Expression
1 r19.26-2 ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑢𝑥 ) ·ih 𝑦 ) ∧ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑣𝑥 ) ·ih 𝑦 ) ) ↔ ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑢𝑥 ) ·ih 𝑦 ) ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑣𝑥 ) ·ih 𝑦 ) ) )
2 eqtr2 ( ( ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑢𝑥 ) ·ih 𝑦 ) ∧ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑣𝑥 ) ·ih 𝑦 ) ) → ( ( 𝑢𝑥 ) ·ih 𝑦 ) = ( ( 𝑣𝑥 ) ·ih 𝑦 ) )
3 2 2ralimi ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑢𝑥 ) ·ih 𝑦 ) ∧ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑣𝑥 ) ·ih 𝑦 ) ) → ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑢𝑥 ) ·ih 𝑦 ) = ( ( 𝑣𝑥 ) ·ih 𝑦 ) )
4 1 3 sylbir ( ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑢𝑥 ) ·ih 𝑦 ) ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑣𝑥 ) ·ih 𝑦 ) ) → ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑢𝑥 ) ·ih 𝑦 ) = ( ( 𝑣𝑥 ) ·ih 𝑦 ) )
5 hoeq1 ( ( 𝑢 : ℋ ⟶ ℋ ∧ 𝑣 : ℋ ⟶ ℋ ) → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑢𝑥 ) ·ih 𝑦 ) = ( ( 𝑣𝑥 ) ·ih 𝑦 ) ↔ 𝑢 = 𝑣 ) )
6 5 biimpa ( ( ( 𝑢 : ℋ ⟶ ℋ ∧ 𝑣 : ℋ ⟶ ℋ ) ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑢𝑥 ) ·ih 𝑦 ) = ( ( 𝑣𝑥 ) ·ih 𝑦 ) ) → 𝑢 = 𝑣 )
7 4 6 sylan2 ( ( ( 𝑢 : ℋ ⟶ ℋ ∧ 𝑣 : ℋ ⟶ ℋ ) ∧ ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑢𝑥 ) ·ih 𝑦 ) ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑣𝑥 ) ·ih 𝑦 ) ) ) → 𝑢 = 𝑣 )
8 7 an4s ( ( ( 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑢𝑥 ) ·ih 𝑦 ) ) ∧ ( 𝑣 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑣𝑥 ) ·ih 𝑦 ) ) ) → 𝑢 = 𝑣 )
9 8 gen2 𝑢𝑣 ( ( ( 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑢𝑥 ) ·ih 𝑦 ) ) ∧ ( 𝑣 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑣𝑥 ) ·ih 𝑦 ) ) ) → 𝑢 = 𝑣 )
10 feq1 ( 𝑢 = 𝑣 → ( 𝑢 : ℋ ⟶ ℋ ↔ 𝑣 : ℋ ⟶ ℋ ) )
11 fveq1 ( 𝑢 = 𝑣 → ( 𝑢𝑥 ) = ( 𝑣𝑥 ) )
12 11 oveq1d ( 𝑢 = 𝑣 → ( ( 𝑢𝑥 ) ·ih 𝑦 ) = ( ( 𝑣𝑥 ) ·ih 𝑦 ) )
13 12 eqeq2d ( 𝑢 = 𝑣 → ( ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑢𝑥 ) ·ih 𝑦 ) ↔ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑣𝑥 ) ·ih 𝑦 ) ) )
14 13 2ralbidv ( 𝑢 = 𝑣 → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑢𝑥 ) ·ih 𝑦 ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑣𝑥 ) ·ih 𝑦 ) ) )
15 10 14 anbi12d ( 𝑢 = 𝑣 → ( ( 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑢𝑥 ) ·ih 𝑦 ) ) ↔ ( 𝑣 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑣𝑥 ) ·ih 𝑦 ) ) ) )
16 15 mo4 ( ∃* 𝑢 ( 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑢𝑥 ) ·ih 𝑦 ) ) ↔ ∀ 𝑢𝑣 ( ( ( 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑢𝑥 ) ·ih 𝑦 ) ) ∧ ( 𝑣 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑣𝑥 ) ·ih 𝑦 ) ) ) → 𝑢 = 𝑣 ) )
17 9 16 mpbir ∃* 𝑢 ( 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑢𝑥 ) ·ih 𝑦 ) )