Step |
Hyp |
Ref |
Expression |
1 |
|
r19.26-2 |
⊢ ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑢 ‘ 𝑥 ) ·ih 𝑦 ) ∧ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑣 ‘ 𝑥 ) ·ih 𝑦 ) ) ↔ ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑢 ‘ 𝑥 ) ·ih 𝑦 ) ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑣 ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
2 |
|
eqtr2 |
⊢ ( ( ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑢 ‘ 𝑥 ) ·ih 𝑦 ) ∧ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑣 ‘ 𝑥 ) ·ih 𝑦 ) ) → ( ( 𝑢 ‘ 𝑥 ) ·ih 𝑦 ) = ( ( 𝑣 ‘ 𝑥 ) ·ih 𝑦 ) ) |
3 |
2
|
2ralimi |
⊢ ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑢 ‘ 𝑥 ) ·ih 𝑦 ) ∧ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑣 ‘ 𝑥 ) ·ih 𝑦 ) ) → ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑢 ‘ 𝑥 ) ·ih 𝑦 ) = ( ( 𝑣 ‘ 𝑥 ) ·ih 𝑦 ) ) |
4 |
1 3
|
sylbir |
⊢ ( ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑢 ‘ 𝑥 ) ·ih 𝑦 ) ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑣 ‘ 𝑥 ) ·ih 𝑦 ) ) → ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑢 ‘ 𝑥 ) ·ih 𝑦 ) = ( ( 𝑣 ‘ 𝑥 ) ·ih 𝑦 ) ) |
5 |
|
hoeq1 |
⊢ ( ( 𝑢 : ℋ ⟶ ℋ ∧ 𝑣 : ℋ ⟶ ℋ ) → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑢 ‘ 𝑥 ) ·ih 𝑦 ) = ( ( 𝑣 ‘ 𝑥 ) ·ih 𝑦 ) ↔ 𝑢 = 𝑣 ) ) |
6 |
5
|
biimpa |
⊢ ( ( ( 𝑢 : ℋ ⟶ ℋ ∧ 𝑣 : ℋ ⟶ ℋ ) ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑢 ‘ 𝑥 ) ·ih 𝑦 ) = ( ( 𝑣 ‘ 𝑥 ) ·ih 𝑦 ) ) → 𝑢 = 𝑣 ) |
7 |
4 6
|
sylan2 |
⊢ ( ( ( 𝑢 : ℋ ⟶ ℋ ∧ 𝑣 : ℋ ⟶ ℋ ) ∧ ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑢 ‘ 𝑥 ) ·ih 𝑦 ) ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑣 ‘ 𝑥 ) ·ih 𝑦 ) ) ) → 𝑢 = 𝑣 ) |
8 |
7
|
an4s |
⊢ ( ( ( 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑢 ‘ 𝑥 ) ·ih 𝑦 ) ) ∧ ( 𝑣 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑣 ‘ 𝑥 ) ·ih 𝑦 ) ) ) → 𝑢 = 𝑣 ) |
9 |
8
|
gen2 |
⊢ ∀ 𝑢 ∀ 𝑣 ( ( ( 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑢 ‘ 𝑥 ) ·ih 𝑦 ) ) ∧ ( 𝑣 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑣 ‘ 𝑥 ) ·ih 𝑦 ) ) ) → 𝑢 = 𝑣 ) |
10 |
|
feq1 |
⊢ ( 𝑢 = 𝑣 → ( 𝑢 : ℋ ⟶ ℋ ↔ 𝑣 : ℋ ⟶ ℋ ) ) |
11 |
|
fveq1 |
⊢ ( 𝑢 = 𝑣 → ( 𝑢 ‘ 𝑥 ) = ( 𝑣 ‘ 𝑥 ) ) |
12 |
11
|
oveq1d |
⊢ ( 𝑢 = 𝑣 → ( ( 𝑢 ‘ 𝑥 ) ·ih 𝑦 ) = ( ( 𝑣 ‘ 𝑥 ) ·ih 𝑦 ) ) |
13 |
12
|
eqeq2d |
⊢ ( 𝑢 = 𝑣 → ( ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑢 ‘ 𝑥 ) ·ih 𝑦 ) ↔ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑣 ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
14 |
13
|
2ralbidv |
⊢ ( 𝑢 = 𝑣 → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑢 ‘ 𝑥 ) ·ih 𝑦 ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑣 ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
15 |
10 14
|
anbi12d |
⊢ ( 𝑢 = 𝑣 → ( ( 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑢 ‘ 𝑥 ) ·ih 𝑦 ) ) ↔ ( 𝑣 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑣 ‘ 𝑥 ) ·ih 𝑦 ) ) ) ) |
16 |
15
|
mo4 |
⊢ ( ∃* 𝑢 ( 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑢 ‘ 𝑥 ) ·ih 𝑦 ) ) ↔ ∀ 𝑢 ∀ 𝑣 ( ( ( 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑢 ‘ 𝑥 ) ·ih 𝑦 ) ) ∧ ( 𝑣 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑣 ‘ 𝑥 ) ·ih 𝑦 ) ) ) → 𝑢 = 𝑣 ) ) |
17 |
9 16
|
mpbir |
⊢ ∃* 𝑢 ( 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑢 ‘ 𝑥 ) ·ih 𝑦 ) ) |