| Step | Hyp | Ref | Expression | 
						
							| 1 |  | r19.26-2 | ⊢ ( ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 )  ∧  ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑣 ‘ 𝑥 )  ·ih  𝑦 ) )  ↔  ( ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 )  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑣 ‘ 𝑥 )  ·ih  𝑦 ) ) ) | 
						
							| 2 |  | eqtr2 | ⊢ ( ( ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 )  ∧  ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑣 ‘ 𝑥 )  ·ih  𝑦 ) )  →  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 )  =  ( ( 𝑣 ‘ 𝑥 )  ·ih  𝑦 ) ) | 
						
							| 3 | 2 | 2ralimi | ⊢ ( ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 )  ∧  ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑣 ‘ 𝑥 )  ·ih  𝑦 ) )  →  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 )  =  ( ( 𝑣 ‘ 𝑥 )  ·ih  𝑦 ) ) | 
						
							| 4 | 1 3 | sylbir | ⊢ ( ( ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 )  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑣 ‘ 𝑥 )  ·ih  𝑦 ) )  →  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 )  =  ( ( 𝑣 ‘ 𝑥 )  ·ih  𝑦 ) ) | 
						
							| 5 |  | hoeq1 | ⊢ ( ( 𝑢 :  ℋ ⟶  ℋ  ∧  𝑣 :  ℋ ⟶  ℋ )  →  ( ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 )  =  ( ( 𝑣 ‘ 𝑥 )  ·ih  𝑦 )  ↔  𝑢  =  𝑣 ) ) | 
						
							| 6 | 5 | biimpa | ⊢ ( ( ( 𝑢 :  ℋ ⟶  ℋ  ∧  𝑣 :  ℋ ⟶  ℋ )  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 )  =  ( ( 𝑣 ‘ 𝑥 )  ·ih  𝑦 ) )  →  𝑢  =  𝑣 ) | 
						
							| 7 | 4 6 | sylan2 | ⊢ ( ( ( 𝑢 :  ℋ ⟶  ℋ  ∧  𝑣 :  ℋ ⟶  ℋ )  ∧  ( ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 )  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑣 ‘ 𝑥 )  ·ih  𝑦 ) ) )  →  𝑢  =  𝑣 ) | 
						
							| 8 | 7 | an4s | ⊢ ( ( ( 𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) )  ∧  ( 𝑣 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑣 ‘ 𝑥 )  ·ih  𝑦 ) ) )  →  𝑢  =  𝑣 ) | 
						
							| 9 | 8 | gen2 | ⊢ ∀ 𝑢 ∀ 𝑣 ( ( ( 𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) )  ∧  ( 𝑣 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑣 ‘ 𝑥 )  ·ih  𝑦 ) ) )  →  𝑢  =  𝑣 ) | 
						
							| 10 |  | feq1 | ⊢ ( 𝑢  =  𝑣  →  ( 𝑢 :  ℋ ⟶  ℋ  ↔  𝑣 :  ℋ ⟶  ℋ ) ) | 
						
							| 11 |  | fveq1 | ⊢ ( 𝑢  =  𝑣  →  ( 𝑢 ‘ 𝑥 )  =  ( 𝑣 ‘ 𝑥 ) ) | 
						
							| 12 | 11 | oveq1d | ⊢ ( 𝑢  =  𝑣  →  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 )  =  ( ( 𝑣 ‘ 𝑥 )  ·ih  𝑦 ) ) | 
						
							| 13 | 12 | eqeq2d | ⊢ ( 𝑢  =  𝑣  →  ( ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 )  ↔  ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑣 ‘ 𝑥 )  ·ih  𝑦 ) ) ) | 
						
							| 14 | 13 | 2ralbidv | ⊢ ( 𝑢  =  𝑣  →  ( ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 )  ↔  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑣 ‘ 𝑥 )  ·ih  𝑦 ) ) ) | 
						
							| 15 | 10 14 | anbi12d | ⊢ ( 𝑢  =  𝑣  →  ( ( 𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) )  ↔  ( 𝑣 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑣 ‘ 𝑥 )  ·ih  𝑦 ) ) ) ) | 
						
							| 16 | 15 | mo4 | ⊢ ( ∃* 𝑢 ( 𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) )  ↔  ∀ 𝑢 ∀ 𝑣 ( ( ( 𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) )  ∧  ( 𝑣 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑣 ‘ 𝑥 )  ·ih  𝑦 ) ) )  →  𝑢  =  𝑣 ) ) | 
						
							| 17 | 9 16 | mpbir | ⊢ ∃* 𝑢 ( 𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) ) |