| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dmadjop | 
							⊢ ( 𝑇  ∈  dom  adjℎ  →  𝑇 :  ℋ ⟶  ℋ )  | 
						
						
							| 2 | 
							
								
							 | 
							homulcl | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑇 :  ℋ ⟶  ℋ )  →  ( 𝐴  ·op  𝑇 ) :  ℋ ⟶  ℋ )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							sylan2 | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑇  ∈  dom  adjℎ )  →  ( 𝐴  ·op  𝑇 ) :  ℋ ⟶  ℋ )  | 
						
						
							| 4 | 
							
								
							 | 
							cjcl | 
							⊢ ( 𝐴  ∈  ℂ  →  ( ∗ ‘ 𝐴 )  ∈  ℂ )  | 
						
						
							| 5 | 
							
								
							 | 
							dmadjrn | 
							⊢ ( 𝑇  ∈  dom  adjℎ  →  ( adjℎ ‘ 𝑇 )  ∈  dom  adjℎ )  | 
						
						
							| 6 | 
							
								
							 | 
							dmadjop | 
							⊢ ( ( adjℎ ‘ 𝑇 )  ∈  dom  adjℎ  →  ( adjℎ ‘ 𝑇 ) :  ℋ ⟶  ℋ )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							syl | 
							⊢ ( 𝑇  ∈  dom  adjℎ  →  ( adjℎ ‘ 𝑇 ) :  ℋ ⟶  ℋ )  | 
						
						
							| 8 | 
							
								
							 | 
							homulcl | 
							⊢ ( ( ( ∗ ‘ 𝐴 )  ∈  ℂ  ∧  ( adjℎ ‘ 𝑇 ) :  ℋ ⟶  ℋ )  →  ( ( ∗ ‘ 𝐴 )  ·op  ( adjℎ ‘ 𝑇 ) ) :  ℋ ⟶  ℋ )  | 
						
						
							| 9 | 
							
								4 7 8
							 | 
							syl2an | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑇  ∈  dom  adjℎ )  →  ( ( ∗ ‘ 𝐴 )  ·op  ( adjℎ ‘ 𝑇 ) ) :  ℋ ⟶  ℋ )  | 
						
						
							| 10 | 
							
								
							 | 
							adj2 | 
							⊢ ( ( 𝑇  ∈  dom  adjℎ  ∧  𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ )  →  ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑦 )  =  ( 𝑥  ·ih  ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							3expb | 
							⊢ ( ( 𝑇  ∈  dom  adjℎ  ∧  ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ ) )  →  ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑦 )  =  ( 𝑥  ·ih  ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							adantll | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑇  ∈  dom  adjℎ )  ∧  ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ ) )  →  ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑦 )  =  ( 𝑥  ·ih  ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							oveq2d | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑇  ∈  dom  adjℎ )  ∧  ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ ) )  →  ( 𝐴  ·  ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑦 ) )  =  ( 𝐴  ·  ( 𝑥  ·ih  ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ) )  | 
						
						
							| 14 | 
							
								1
							 | 
							ffvelcdmda | 
							⊢ ( ( 𝑇  ∈  dom  adjℎ  ∧  𝑥  ∈   ℋ )  →  ( 𝑇 ‘ 𝑥 )  ∈   ℋ )  | 
						
						
							| 15 | 
							
								
							 | 
							ax-his3 | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( 𝑇 ‘ 𝑥 )  ∈   ℋ  ∧  𝑦  ∈   ℋ )  →  ( ( 𝐴  ·ℎ  ( 𝑇 ‘ 𝑥 ) )  ·ih  𝑦 )  =  ( 𝐴  ·  ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑦 ) ) )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							syl3an2 | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( 𝑇  ∈  dom  adjℎ  ∧  𝑥  ∈   ℋ )  ∧  𝑦  ∈   ℋ )  →  ( ( 𝐴  ·ℎ  ( 𝑇 ‘ 𝑥 ) )  ·ih  𝑦 )  =  ( 𝐴  ·  ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑦 ) ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							3exp | 
							⊢ ( 𝐴  ∈  ℂ  →  ( ( 𝑇  ∈  dom  adjℎ  ∧  𝑥  ∈   ℋ )  →  ( 𝑦  ∈   ℋ  →  ( ( 𝐴  ·ℎ  ( 𝑇 ‘ 𝑥 ) )  ·ih  𝑦 )  =  ( 𝐴  ·  ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑦 ) ) ) ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							expd | 
							⊢ ( 𝐴  ∈  ℂ  →  ( 𝑇  ∈  dom  adjℎ  →  ( 𝑥  ∈   ℋ  →  ( 𝑦  ∈   ℋ  →  ( ( 𝐴  ·ℎ  ( 𝑇 ‘ 𝑥 ) )  ·ih  𝑦 )  =  ( 𝐴  ·  ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑦 ) ) ) ) ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							imp43 | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑇  ∈  dom  adjℎ )  ∧  ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ ) )  →  ( ( 𝐴  ·ℎ  ( 𝑇 ‘ 𝑥 ) )  ·ih  𝑦 )  =  ( 𝐴  ·  ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑦 ) ) )  | 
						
						
							| 20 | 
							
								
							 | 
							simpll | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑇  ∈  dom  adjℎ )  ∧  ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ ) )  →  𝐴  ∈  ℂ )  | 
						
						
							| 21 | 
							
								
							 | 
							simprl | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑇  ∈  dom  adjℎ )  ∧  ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ ) )  →  𝑥  ∈   ℋ )  | 
						
						
							| 22 | 
							
								
							 | 
							adjcl | 
							⊢ ( ( 𝑇  ∈  dom  adjℎ  ∧  𝑦  ∈   ℋ )  →  ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 )  ∈   ℋ )  | 
						
						
							| 23 | 
							
								22
							 | 
							ad2ant2l | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑇  ∈  dom  adjℎ )  ∧  ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ ) )  →  ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 )  ∈   ℋ )  | 
						
						
							| 24 | 
							
								
							 | 
							his52 | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑥  ∈   ℋ  ∧  ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 )  ∈   ℋ )  →  ( 𝑥  ·ih  ( ( ∗ ‘ 𝐴 )  ·ℎ  ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) )  =  ( 𝐴  ·  ( 𝑥  ·ih  ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ) )  | 
						
						
							| 25 | 
							
								20 21 23 24
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑇  ∈  dom  adjℎ )  ∧  ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ ) )  →  ( 𝑥  ·ih  ( ( ∗ ‘ 𝐴 )  ·ℎ  ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) )  =  ( 𝐴  ·  ( 𝑥  ·ih  ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ) )  | 
						
						
							| 26 | 
							
								13 19 25
							 | 
							3eqtr4d | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑇  ∈  dom  adjℎ )  ∧  ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ ) )  →  ( ( 𝐴  ·ℎ  ( 𝑇 ‘ 𝑥 ) )  ·ih  𝑦 )  =  ( 𝑥  ·ih  ( ( ∗ ‘ 𝐴 )  ·ℎ  ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ) )  | 
						
						
							| 27 | 
							
								
							 | 
							homval | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑇 :  ℋ ⟶  ℋ  ∧  𝑥  ∈   ℋ )  →  ( ( 𝐴  ·op  𝑇 ) ‘ 𝑥 )  =  ( 𝐴  ·ℎ  ( 𝑇 ‘ 𝑥 ) ) )  | 
						
						
							| 28 | 
							
								1 27
							 | 
							syl3an2 | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑇  ∈  dom  adjℎ  ∧  𝑥  ∈   ℋ )  →  ( ( 𝐴  ·op  𝑇 ) ‘ 𝑥 )  =  ( 𝐴  ·ℎ  ( 𝑇 ‘ 𝑥 ) ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							3expa | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑇  ∈  dom  adjℎ )  ∧  𝑥  ∈   ℋ )  →  ( ( 𝐴  ·op  𝑇 ) ‘ 𝑥 )  =  ( 𝐴  ·ℎ  ( 𝑇 ‘ 𝑥 ) ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							adantrr | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑇  ∈  dom  adjℎ )  ∧  ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ ) )  →  ( ( 𝐴  ·op  𝑇 ) ‘ 𝑥 )  =  ( 𝐴  ·ℎ  ( 𝑇 ‘ 𝑥 ) ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							oveq1d | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑇  ∈  dom  adjℎ )  ∧  ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ ) )  →  ( ( ( 𝐴  ·op  𝑇 ) ‘ 𝑥 )  ·ih  𝑦 )  =  ( ( 𝐴  ·ℎ  ( 𝑇 ‘ 𝑥 ) )  ·ih  𝑦 ) )  | 
						
						
							| 32 | 
							
								
							 | 
							id | 
							⊢ ( 𝑦  ∈   ℋ  →  𝑦  ∈   ℋ )  | 
						
						
							| 33 | 
							
								
							 | 
							homval | 
							⊢ ( ( ( ∗ ‘ 𝐴 )  ∈  ℂ  ∧  ( adjℎ ‘ 𝑇 ) :  ℋ ⟶  ℋ  ∧  𝑦  ∈   ℋ )  →  ( ( ( ∗ ‘ 𝐴 )  ·op  ( adjℎ ‘ 𝑇 ) ) ‘ 𝑦 )  =  ( ( ∗ ‘ 𝐴 )  ·ℎ  ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) )  | 
						
						
							| 34 | 
							
								4 7 32 33
							 | 
							syl3an | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑇  ∈  dom  adjℎ  ∧  𝑦  ∈   ℋ )  →  ( ( ( ∗ ‘ 𝐴 )  ·op  ( adjℎ ‘ 𝑇 ) ) ‘ 𝑦 )  =  ( ( ∗ ‘ 𝐴 )  ·ℎ  ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) )  | 
						
						
							| 35 | 
							
								34
							 | 
							3expa | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑇  ∈  dom  adjℎ )  ∧  𝑦  ∈   ℋ )  →  ( ( ( ∗ ‘ 𝐴 )  ·op  ( adjℎ ‘ 𝑇 ) ) ‘ 𝑦 )  =  ( ( ∗ ‘ 𝐴 )  ·ℎ  ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) )  | 
						
						
							| 36 | 
							
								35
							 | 
							adantrl | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑇  ∈  dom  adjℎ )  ∧  ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ ) )  →  ( ( ( ∗ ‘ 𝐴 )  ·op  ( adjℎ ‘ 𝑇 ) ) ‘ 𝑦 )  =  ( ( ∗ ‘ 𝐴 )  ·ℎ  ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							oveq2d | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑇  ∈  dom  adjℎ )  ∧  ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ ) )  →  ( 𝑥  ·ih  ( ( ( ∗ ‘ 𝐴 )  ·op  ( adjℎ ‘ 𝑇 ) ) ‘ 𝑦 ) )  =  ( 𝑥  ·ih  ( ( ∗ ‘ 𝐴 )  ·ℎ  ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ) )  | 
						
						
							| 38 | 
							
								26 31 37
							 | 
							3eqtr4d | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑇  ∈  dom  adjℎ )  ∧  ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ ) )  →  ( ( ( 𝐴  ·op  𝑇 ) ‘ 𝑥 )  ·ih  𝑦 )  =  ( 𝑥  ·ih  ( ( ( ∗ ‘ 𝐴 )  ·op  ( adjℎ ‘ 𝑇 ) ) ‘ 𝑦 ) ) )  | 
						
						
							| 39 | 
							
								38
							 | 
							ralrimivva | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑇  ∈  dom  adjℎ )  →  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( ( ( 𝐴  ·op  𝑇 ) ‘ 𝑥 )  ·ih  𝑦 )  =  ( 𝑥  ·ih  ( ( ( ∗ ‘ 𝐴 )  ·op  ( adjℎ ‘ 𝑇 ) ) ‘ 𝑦 ) ) )  | 
						
						
							| 40 | 
							
								
							 | 
							adjeq | 
							⊢ ( ( ( 𝐴  ·op  𝑇 ) :  ℋ ⟶  ℋ  ∧  ( ( ∗ ‘ 𝐴 )  ·op  ( adjℎ ‘ 𝑇 ) ) :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( ( ( 𝐴  ·op  𝑇 ) ‘ 𝑥 )  ·ih  𝑦 )  =  ( 𝑥  ·ih  ( ( ( ∗ ‘ 𝐴 )  ·op  ( adjℎ ‘ 𝑇 ) ) ‘ 𝑦 ) ) )  →  ( adjℎ ‘ ( 𝐴  ·op  𝑇 ) )  =  ( ( ∗ ‘ 𝐴 )  ·op  ( adjℎ ‘ 𝑇 ) ) )  | 
						
						
							| 41 | 
							
								3 9 39 40
							 | 
							syl3anc | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑇  ∈  dom  adjℎ )  →  ( adjℎ ‘ ( 𝐴  ·op  𝑇 ) )  =  ( ( ∗ ‘ 𝐴 )  ·op  ( adjℎ ‘ 𝑇 ) ) )  |