Step |
Hyp |
Ref |
Expression |
1 |
|
dmadjop |
⊢ ( 𝑇 ∈ dom adjℎ → 𝑇 : ℋ ⟶ ℋ ) |
2 |
|
homulcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( 𝐴 ·op 𝑇 ) : ℋ ⟶ ℋ ) |
3 |
1 2
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adjℎ ) → ( 𝐴 ·op 𝑇 ) : ℋ ⟶ ℋ ) |
4 |
|
cjcl |
⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ 𝐴 ) ∈ ℂ ) |
5 |
|
dmadjrn |
⊢ ( 𝑇 ∈ dom adjℎ → ( adjℎ ‘ 𝑇 ) ∈ dom adjℎ ) |
6 |
|
dmadjop |
⊢ ( ( adjℎ ‘ 𝑇 ) ∈ dom adjℎ → ( adjℎ ‘ 𝑇 ) : ℋ ⟶ ℋ ) |
7 |
5 6
|
syl |
⊢ ( 𝑇 ∈ dom adjℎ → ( adjℎ ‘ 𝑇 ) : ℋ ⟶ ℋ ) |
8 |
|
homulcl |
⊢ ( ( ( ∗ ‘ 𝐴 ) ∈ ℂ ∧ ( adjℎ ‘ 𝑇 ) : ℋ ⟶ ℋ ) → ( ( ∗ ‘ 𝐴 ) ·op ( adjℎ ‘ 𝑇 ) ) : ℋ ⟶ ℋ ) |
9 |
4 7 8
|
syl2an |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adjℎ ) → ( ( ∗ ‘ 𝐴 ) ·op ( adjℎ ‘ 𝑇 ) ) : ℋ ⟶ ℋ ) |
10 |
|
adj2 |
⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ) |
11 |
10
|
3expb |
⊢ ( ( 𝑇 ∈ dom adjℎ ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ) |
12 |
11
|
adantll |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adjℎ ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ) |
13 |
12
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adjℎ ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( 𝐴 · ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ) = ( 𝐴 · ( 𝑥 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ) ) |
14 |
1
|
ffvelrnda |
⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝑥 ∈ ℋ ) → ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) |
15 |
|
ax-his3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑇 ‘ 𝑥 ) ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ·ih 𝑦 ) = ( 𝐴 · ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
16 |
14 15
|
syl3an2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑇 ∈ dom adjℎ ∧ 𝑥 ∈ ℋ ) ∧ 𝑦 ∈ ℋ ) → ( ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ·ih 𝑦 ) = ( 𝐴 · ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
17 |
16
|
3exp |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝑇 ∈ dom adjℎ ∧ 𝑥 ∈ ℋ ) → ( 𝑦 ∈ ℋ → ( ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ·ih 𝑦 ) = ( 𝐴 · ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ) ) ) ) |
18 |
17
|
expd |
⊢ ( 𝐴 ∈ ℂ → ( 𝑇 ∈ dom adjℎ → ( 𝑥 ∈ ℋ → ( 𝑦 ∈ ℋ → ( ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ·ih 𝑦 ) = ( 𝐴 · ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ) ) ) ) ) |
19 |
18
|
imp43 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adjℎ ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ·ih 𝑦 ) = ( 𝐴 · ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
20 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adjℎ ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → 𝐴 ∈ ℂ ) |
21 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adjℎ ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → 𝑥 ∈ ℋ ) |
22 |
|
adjcl |
⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝑦 ∈ ℋ ) → ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ∈ ℋ ) |
23 |
22
|
ad2ant2l |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adjℎ ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ∈ ℋ ) |
24 |
|
his52 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ ∧ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ∈ ℋ ) → ( 𝑥 ·ih ( ( ∗ ‘ 𝐴 ) ·ℎ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ) = ( 𝐴 · ( 𝑥 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ) ) |
25 |
20 21 23 24
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adjℎ ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( 𝑥 ·ih ( ( ∗ ‘ 𝐴 ) ·ℎ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ) = ( 𝐴 · ( 𝑥 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ) ) |
26 |
13 19 25
|
3eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adjℎ ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ·ih 𝑦 ) = ( 𝑥 ·ih ( ( ∗ ‘ 𝐴 ) ·ℎ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ) ) |
27 |
|
homval |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝐴 ·op 𝑇 ) ‘ 𝑥 ) = ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) |
28 |
1 27
|
syl3an2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adjℎ ∧ 𝑥 ∈ ℋ ) → ( ( 𝐴 ·op 𝑇 ) ‘ 𝑥 ) = ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) |
29 |
28
|
3expa |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adjℎ ) ∧ 𝑥 ∈ ℋ ) → ( ( 𝐴 ·op 𝑇 ) ‘ 𝑥 ) = ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) |
30 |
29
|
adantrr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adjℎ ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( 𝐴 ·op 𝑇 ) ‘ 𝑥 ) = ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) |
31 |
30
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adjℎ ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( ( 𝐴 ·op 𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) = ( ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ·ih 𝑦 ) ) |
32 |
|
id |
⊢ ( 𝑦 ∈ ℋ → 𝑦 ∈ ℋ ) |
33 |
|
homval |
⊢ ( ( ( ∗ ‘ 𝐴 ) ∈ ℂ ∧ ( adjℎ ‘ 𝑇 ) : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( ( ∗ ‘ 𝐴 ) ·op ( adjℎ ‘ 𝑇 ) ) ‘ 𝑦 ) = ( ( ∗ ‘ 𝐴 ) ·ℎ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ) |
34 |
4 7 32 33
|
syl3an |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adjℎ ∧ 𝑦 ∈ ℋ ) → ( ( ( ∗ ‘ 𝐴 ) ·op ( adjℎ ‘ 𝑇 ) ) ‘ 𝑦 ) = ( ( ∗ ‘ 𝐴 ) ·ℎ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ) |
35 |
34
|
3expa |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adjℎ ) ∧ 𝑦 ∈ ℋ ) → ( ( ( ∗ ‘ 𝐴 ) ·op ( adjℎ ‘ 𝑇 ) ) ‘ 𝑦 ) = ( ( ∗ ‘ 𝐴 ) ·ℎ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ) |
36 |
35
|
adantrl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adjℎ ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( ( ∗ ‘ 𝐴 ) ·op ( adjℎ ‘ 𝑇 ) ) ‘ 𝑦 ) = ( ( ∗ ‘ 𝐴 ) ·ℎ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ) |
37 |
36
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adjℎ ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( 𝑥 ·ih ( ( ( ∗ ‘ 𝐴 ) ·op ( adjℎ ‘ 𝑇 ) ) ‘ 𝑦 ) ) = ( 𝑥 ·ih ( ( ∗ ‘ 𝐴 ) ·ℎ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ) ) |
38 |
26 31 37
|
3eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adjℎ ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( ( 𝐴 ·op 𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( ( ( ∗ ‘ 𝐴 ) ·op ( adjℎ ‘ 𝑇 ) ) ‘ 𝑦 ) ) ) |
39 |
38
|
ralrimivva |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adjℎ ) → ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( ( 𝐴 ·op 𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( ( ( ∗ ‘ 𝐴 ) ·op ( adjℎ ‘ 𝑇 ) ) ‘ 𝑦 ) ) ) |
40 |
|
adjeq |
⊢ ( ( ( 𝐴 ·op 𝑇 ) : ℋ ⟶ ℋ ∧ ( ( ∗ ‘ 𝐴 ) ·op ( adjℎ ‘ 𝑇 ) ) : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( ( 𝐴 ·op 𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( ( ( ∗ ‘ 𝐴 ) ·op ( adjℎ ‘ 𝑇 ) ) ‘ 𝑦 ) ) ) → ( adjℎ ‘ ( 𝐴 ·op 𝑇 ) ) = ( ( ∗ ‘ 𝐴 ) ·op ( adjℎ ‘ 𝑇 ) ) ) |
41 |
3 9 39 40
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adjℎ ) → ( adjℎ ‘ ( 𝐴 ·op 𝑇 ) ) = ( ( ∗ ‘ 𝐴 ) ·op ( adjℎ ‘ 𝑇 ) ) ) |