Metamath Proof Explorer


Theorem adjsslnop

Description: Every operator with an adjoint is linear. (Contributed by NM, 17-Jun-2006) (New usage is discouraged.)

Ref Expression
Assertion adjsslnop dom adj ⊆ LinOp

Proof

Step Hyp Ref Expression
1 adjadj ( 𝑡 ∈ dom adj → ( adj ‘ ( adj𝑡 ) ) = 𝑡 )
2 dmadjrn ( 𝑡 ∈ dom adj → ( adj𝑡 ) ∈ dom adj )
3 adjlnop ( ( adj𝑡 ) ∈ dom adj → ( adj ‘ ( adj𝑡 ) ) ∈ LinOp )
4 2 3 syl ( 𝑡 ∈ dom adj → ( adj ‘ ( adj𝑡 ) ) ∈ LinOp )
5 1 4 eqeltrrd ( 𝑡 ∈ dom adj𝑡 ∈ LinOp )
6 5 ssriv dom adj ⊆ LinOp