Description: Every operator with an adjoint is linear. (Contributed by NM, 17-Jun-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | adjsslnop | ⊢ dom adjℎ ⊆ LinOp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | adjadj | ⊢ ( 𝑡 ∈ dom adjℎ → ( adjℎ ‘ ( adjℎ ‘ 𝑡 ) ) = 𝑡 ) | |
| 2 | dmadjrn | ⊢ ( 𝑡 ∈ dom adjℎ → ( adjℎ ‘ 𝑡 ) ∈ dom adjℎ ) | |
| 3 | adjlnop | ⊢ ( ( adjℎ ‘ 𝑡 ) ∈ dom adjℎ → ( adjℎ ‘ ( adjℎ ‘ 𝑡 ) ) ∈ LinOp ) | |
| 4 | 2 3 | syl | ⊢ ( 𝑡 ∈ dom adjℎ → ( adjℎ ‘ ( adjℎ ‘ 𝑡 ) ) ∈ LinOp ) |
| 5 | 1 4 | eqeltrrd | ⊢ ( 𝑡 ∈ dom adjℎ → 𝑡 ∈ LinOp ) |
| 6 | 5 | ssriv | ⊢ dom adjℎ ⊆ LinOp |