| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ralcom | ⊢ ( ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑆 ‘ 𝑦 ) )  =  ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑦 )  ↔  ∀ 𝑦  ∈   ℋ ∀ 𝑥  ∈   ℋ ( 𝑥  ·ih  ( 𝑆 ‘ 𝑦 ) )  =  ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑦 ) ) | 
						
							| 2 |  | fveq2 | ⊢ ( 𝑧  =  𝑦  →  ( 𝑆 ‘ 𝑧 )  =  ( 𝑆 ‘ 𝑦 ) ) | 
						
							| 3 | 2 | oveq2d | ⊢ ( 𝑧  =  𝑦  →  ( 𝑥  ·ih  ( 𝑆 ‘ 𝑧 ) )  =  ( 𝑥  ·ih  ( 𝑆 ‘ 𝑦 ) ) ) | 
						
							| 4 |  | oveq2 | ⊢ ( 𝑧  =  𝑦  →  ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑧 )  =  ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑦 ) ) | 
						
							| 5 | 3 4 | eqeq12d | ⊢ ( 𝑧  =  𝑦  →  ( ( 𝑥  ·ih  ( 𝑆 ‘ 𝑧 ) )  =  ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑧 )  ↔  ( 𝑥  ·ih  ( 𝑆 ‘ 𝑦 ) )  =  ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑦 ) ) ) | 
						
							| 6 | 5 | ralbidv | ⊢ ( 𝑧  =  𝑦  →  ( ∀ 𝑥  ∈   ℋ ( 𝑥  ·ih  ( 𝑆 ‘ 𝑧 ) )  =  ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑧 )  ↔  ∀ 𝑥  ∈   ℋ ( 𝑥  ·ih  ( 𝑆 ‘ 𝑦 ) )  =  ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑦 ) ) ) | 
						
							| 7 | 6 | cbvralvw | ⊢ ( ∀ 𝑧  ∈   ℋ ∀ 𝑥  ∈   ℋ ( 𝑥  ·ih  ( 𝑆 ‘ 𝑧 ) )  =  ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑧 )  ↔  ∀ 𝑦  ∈   ℋ ∀ 𝑥  ∈   ℋ ( 𝑥  ·ih  ( 𝑆 ‘ 𝑦 ) )  =  ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑦 ) ) | 
						
							| 8 | 1 7 | bitr4i | ⊢ ( ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑆 ‘ 𝑦 ) )  =  ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑦 )  ↔  ∀ 𝑧  ∈   ℋ ∀ 𝑥  ∈   ℋ ( 𝑥  ·ih  ( 𝑆 ‘ 𝑧 ) )  =  ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑧 ) ) | 
						
							| 9 |  | oveq1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  ·ih  ( 𝑆 ‘ 𝑧 ) )  =  ( 𝑦  ·ih  ( 𝑆 ‘ 𝑧 ) ) ) | 
						
							| 10 |  | fveq2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑇 ‘ 𝑥 )  =  ( 𝑇 ‘ 𝑦 ) ) | 
						
							| 11 | 10 | oveq1d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑧 )  =  ( ( 𝑇 ‘ 𝑦 )  ·ih  𝑧 ) ) | 
						
							| 12 | 9 11 | eqeq12d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑥  ·ih  ( 𝑆 ‘ 𝑧 ) )  =  ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑧 )  ↔  ( 𝑦  ·ih  ( 𝑆 ‘ 𝑧 ) )  =  ( ( 𝑇 ‘ 𝑦 )  ·ih  𝑧 ) ) ) | 
						
							| 13 | 12 | cbvralvw | ⊢ ( ∀ 𝑥  ∈   ℋ ( 𝑥  ·ih  ( 𝑆 ‘ 𝑧 ) )  =  ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑧 )  ↔  ∀ 𝑦  ∈   ℋ ( 𝑦  ·ih  ( 𝑆 ‘ 𝑧 ) )  =  ( ( 𝑇 ‘ 𝑦 )  ·ih  𝑧 ) ) | 
						
							| 14 | 13 | ralbii | ⊢ ( ∀ 𝑧  ∈   ℋ ∀ 𝑥  ∈   ℋ ( 𝑥  ·ih  ( 𝑆 ‘ 𝑧 ) )  =  ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑧 )  ↔  ∀ 𝑧  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑦  ·ih  ( 𝑆 ‘ 𝑧 ) )  =  ( ( 𝑇 ‘ 𝑦 )  ·ih  𝑧 ) ) | 
						
							| 15 |  | fveq2 | ⊢ ( 𝑧  =  𝑥  →  ( 𝑆 ‘ 𝑧 )  =  ( 𝑆 ‘ 𝑥 ) ) | 
						
							| 16 | 15 | oveq2d | ⊢ ( 𝑧  =  𝑥  →  ( 𝑦  ·ih  ( 𝑆 ‘ 𝑧 ) )  =  ( 𝑦  ·ih  ( 𝑆 ‘ 𝑥 ) ) ) | 
						
							| 17 |  | oveq2 | ⊢ ( 𝑧  =  𝑥  →  ( ( 𝑇 ‘ 𝑦 )  ·ih  𝑧 )  =  ( ( 𝑇 ‘ 𝑦 )  ·ih  𝑥 ) ) | 
						
							| 18 | 16 17 | eqeq12d | ⊢ ( 𝑧  =  𝑥  →  ( ( 𝑦  ·ih  ( 𝑆 ‘ 𝑧 ) )  =  ( ( 𝑇 ‘ 𝑦 )  ·ih  𝑧 )  ↔  ( 𝑦  ·ih  ( 𝑆 ‘ 𝑥 ) )  =  ( ( 𝑇 ‘ 𝑦 )  ·ih  𝑥 ) ) ) | 
						
							| 19 | 18 | ralbidv | ⊢ ( 𝑧  =  𝑥  →  ( ∀ 𝑦  ∈   ℋ ( 𝑦  ·ih  ( 𝑆 ‘ 𝑧 ) )  =  ( ( 𝑇 ‘ 𝑦 )  ·ih  𝑧 )  ↔  ∀ 𝑦  ∈   ℋ ( 𝑦  ·ih  ( 𝑆 ‘ 𝑥 ) )  =  ( ( 𝑇 ‘ 𝑦 )  ·ih  𝑥 ) ) ) | 
						
							| 20 | 19 | cbvralvw | ⊢ ( ∀ 𝑧  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑦  ·ih  ( 𝑆 ‘ 𝑧 ) )  =  ( ( 𝑇 ‘ 𝑦 )  ·ih  𝑧 )  ↔  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑦  ·ih  ( 𝑆 ‘ 𝑥 ) )  =  ( ( 𝑇 ‘ 𝑦 )  ·ih  𝑥 ) ) | 
						
							| 21 | 8 14 20 | 3bitri | ⊢ ( ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑆 ‘ 𝑦 ) )  =  ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑦 )  ↔  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑦  ·ih  ( 𝑆 ‘ 𝑥 ) )  =  ( ( 𝑇 ‘ 𝑦 )  ·ih  𝑥 ) ) | 
						
							| 22 |  | ffvelcdm | ⊢ ( ( 𝑇 :  ℋ ⟶  ℋ  ∧  𝑦  ∈   ℋ )  →  ( 𝑇 ‘ 𝑦 )  ∈   ℋ ) | 
						
							| 23 |  | ax-his1 | ⊢ ( ( ( 𝑇 ‘ 𝑦 )  ∈   ℋ  ∧  𝑥  ∈   ℋ )  →  ( ( 𝑇 ‘ 𝑦 )  ·ih  𝑥 )  =  ( ∗ ‘ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) ) ) ) | 
						
							| 24 | 22 23 | sylan | ⊢ ( ( ( 𝑇 :  ℋ ⟶  ℋ  ∧  𝑦  ∈   ℋ )  ∧  𝑥  ∈   ℋ )  →  ( ( 𝑇 ‘ 𝑦 )  ·ih  𝑥 )  =  ( ∗ ‘ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) ) ) ) | 
						
							| 25 | 24 | adantrl | ⊢ ( ( ( 𝑇 :  ℋ ⟶  ℋ  ∧  𝑦  ∈   ℋ )  ∧  ( 𝑆 :  ℋ ⟶  ℋ  ∧  𝑥  ∈   ℋ ) )  →  ( ( 𝑇 ‘ 𝑦 )  ·ih  𝑥 )  =  ( ∗ ‘ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) ) ) ) | 
						
							| 26 |  | ffvelcdm | ⊢ ( ( 𝑆 :  ℋ ⟶  ℋ  ∧  𝑥  ∈   ℋ )  →  ( 𝑆 ‘ 𝑥 )  ∈   ℋ ) | 
						
							| 27 |  | ax-his1 | ⊢ ( ( 𝑦  ∈   ℋ  ∧  ( 𝑆 ‘ 𝑥 )  ∈   ℋ )  →  ( 𝑦  ·ih  ( 𝑆 ‘ 𝑥 ) )  =  ( ∗ ‘ ( ( 𝑆 ‘ 𝑥 )  ·ih  𝑦 ) ) ) | 
						
							| 28 | 26 27 | sylan2 | ⊢ ( ( 𝑦  ∈   ℋ  ∧  ( 𝑆 :  ℋ ⟶  ℋ  ∧  𝑥  ∈   ℋ ) )  →  ( 𝑦  ·ih  ( 𝑆 ‘ 𝑥 ) )  =  ( ∗ ‘ ( ( 𝑆 ‘ 𝑥 )  ·ih  𝑦 ) ) ) | 
						
							| 29 | 28 | adantll | ⊢ ( ( ( 𝑇 :  ℋ ⟶  ℋ  ∧  𝑦  ∈   ℋ )  ∧  ( 𝑆 :  ℋ ⟶  ℋ  ∧  𝑥  ∈   ℋ ) )  →  ( 𝑦  ·ih  ( 𝑆 ‘ 𝑥 ) )  =  ( ∗ ‘ ( ( 𝑆 ‘ 𝑥 )  ·ih  𝑦 ) ) ) | 
						
							| 30 | 25 29 | eqeq12d | ⊢ ( ( ( 𝑇 :  ℋ ⟶  ℋ  ∧  𝑦  ∈   ℋ )  ∧  ( 𝑆 :  ℋ ⟶  ℋ  ∧  𝑥  ∈   ℋ ) )  →  ( ( ( 𝑇 ‘ 𝑦 )  ·ih  𝑥 )  =  ( 𝑦  ·ih  ( 𝑆 ‘ 𝑥 ) )  ↔  ( ∗ ‘ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) ) )  =  ( ∗ ‘ ( ( 𝑆 ‘ 𝑥 )  ·ih  𝑦 ) ) ) ) | 
						
							| 31 | 30 | ancoms | ⊢ ( ( ( 𝑆 :  ℋ ⟶  ℋ  ∧  𝑥  ∈   ℋ )  ∧  ( 𝑇 :  ℋ ⟶  ℋ  ∧  𝑦  ∈   ℋ ) )  →  ( ( ( 𝑇 ‘ 𝑦 )  ·ih  𝑥 )  =  ( 𝑦  ·ih  ( 𝑆 ‘ 𝑥 ) )  ↔  ( ∗ ‘ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) ) )  =  ( ∗ ‘ ( ( 𝑆 ‘ 𝑥 )  ·ih  𝑦 ) ) ) ) | 
						
							| 32 |  | hicl | ⊢ ( ( 𝑥  ∈   ℋ  ∧  ( 𝑇 ‘ 𝑦 )  ∈   ℋ )  →  ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  ∈  ℂ ) | 
						
							| 33 | 22 32 | sylan2 | ⊢ ( ( 𝑥  ∈   ℋ  ∧  ( 𝑇 :  ℋ ⟶  ℋ  ∧  𝑦  ∈   ℋ ) )  →  ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  ∈  ℂ ) | 
						
							| 34 | 33 | adantll | ⊢ ( ( ( 𝑆 :  ℋ ⟶  ℋ  ∧  𝑥  ∈   ℋ )  ∧  ( 𝑇 :  ℋ ⟶  ℋ  ∧  𝑦  ∈   ℋ ) )  →  ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  ∈  ℂ ) | 
						
							| 35 |  | hicl | ⊢ ( ( ( 𝑆 ‘ 𝑥 )  ∈   ℋ  ∧  𝑦  ∈   ℋ )  →  ( ( 𝑆 ‘ 𝑥 )  ·ih  𝑦 )  ∈  ℂ ) | 
						
							| 36 | 26 35 | sylan | ⊢ ( ( ( 𝑆 :  ℋ ⟶  ℋ  ∧  𝑥  ∈   ℋ )  ∧  𝑦  ∈   ℋ )  →  ( ( 𝑆 ‘ 𝑥 )  ·ih  𝑦 )  ∈  ℂ ) | 
						
							| 37 | 36 | adantrl | ⊢ ( ( ( 𝑆 :  ℋ ⟶  ℋ  ∧  𝑥  ∈   ℋ )  ∧  ( 𝑇 :  ℋ ⟶  ℋ  ∧  𝑦  ∈   ℋ ) )  →  ( ( 𝑆 ‘ 𝑥 )  ·ih  𝑦 )  ∈  ℂ ) | 
						
							| 38 |  | cj11 | ⊢ ( ( ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  ∈  ℂ  ∧  ( ( 𝑆 ‘ 𝑥 )  ·ih  𝑦 )  ∈  ℂ )  →  ( ( ∗ ‘ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) ) )  =  ( ∗ ‘ ( ( 𝑆 ‘ 𝑥 )  ·ih  𝑦 ) )  ↔  ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑆 ‘ 𝑥 )  ·ih  𝑦 ) ) ) | 
						
							| 39 | 34 37 38 | syl2anc | ⊢ ( ( ( 𝑆 :  ℋ ⟶  ℋ  ∧  𝑥  ∈   ℋ )  ∧  ( 𝑇 :  ℋ ⟶  ℋ  ∧  𝑦  ∈   ℋ ) )  →  ( ( ∗ ‘ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) ) )  =  ( ∗ ‘ ( ( 𝑆 ‘ 𝑥 )  ·ih  𝑦 ) )  ↔  ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑆 ‘ 𝑥 )  ·ih  𝑦 ) ) ) | 
						
							| 40 | 31 39 | bitr2d | ⊢ ( ( ( 𝑆 :  ℋ ⟶  ℋ  ∧  𝑥  ∈   ℋ )  ∧  ( 𝑇 :  ℋ ⟶  ℋ  ∧  𝑦  ∈   ℋ ) )  →  ( ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑆 ‘ 𝑥 )  ·ih  𝑦 )  ↔  ( ( 𝑇 ‘ 𝑦 )  ·ih  𝑥 )  =  ( 𝑦  ·ih  ( 𝑆 ‘ 𝑥 ) ) ) ) | 
						
							| 41 | 40 | an4s | ⊢ ( ( ( 𝑆 :  ℋ ⟶  ℋ  ∧  𝑇 :  ℋ ⟶  ℋ )  ∧  ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ ) )  →  ( ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑆 ‘ 𝑥 )  ·ih  𝑦 )  ↔  ( ( 𝑇 ‘ 𝑦 )  ·ih  𝑥 )  =  ( 𝑦  ·ih  ( 𝑆 ‘ 𝑥 ) ) ) ) | 
						
							| 42 | 41 | anassrs | ⊢ ( ( ( ( 𝑆 :  ℋ ⟶  ℋ  ∧  𝑇 :  ℋ ⟶  ℋ )  ∧  𝑥  ∈   ℋ )  ∧  𝑦  ∈   ℋ )  →  ( ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑆 ‘ 𝑥 )  ·ih  𝑦 )  ↔  ( ( 𝑇 ‘ 𝑦 )  ·ih  𝑥 )  =  ( 𝑦  ·ih  ( 𝑆 ‘ 𝑥 ) ) ) ) | 
						
							| 43 |  | eqcom | ⊢ ( ( ( 𝑇 ‘ 𝑦 )  ·ih  𝑥 )  =  ( 𝑦  ·ih  ( 𝑆 ‘ 𝑥 ) )  ↔  ( 𝑦  ·ih  ( 𝑆 ‘ 𝑥 ) )  =  ( ( 𝑇 ‘ 𝑦 )  ·ih  𝑥 ) ) | 
						
							| 44 | 42 43 | bitrdi | ⊢ ( ( ( ( 𝑆 :  ℋ ⟶  ℋ  ∧  𝑇 :  ℋ ⟶  ℋ )  ∧  𝑥  ∈   ℋ )  ∧  𝑦  ∈   ℋ )  →  ( ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑆 ‘ 𝑥 )  ·ih  𝑦 )  ↔  ( 𝑦  ·ih  ( 𝑆 ‘ 𝑥 ) )  =  ( ( 𝑇 ‘ 𝑦 )  ·ih  𝑥 ) ) ) | 
						
							| 45 | 44 | ralbidva | ⊢ ( ( ( 𝑆 :  ℋ ⟶  ℋ  ∧  𝑇 :  ℋ ⟶  ℋ )  ∧  𝑥  ∈   ℋ )  →  ( ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑆 ‘ 𝑥 )  ·ih  𝑦 )  ↔  ∀ 𝑦  ∈   ℋ ( 𝑦  ·ih  ( 𝑆 ‘ 𝑥 ) )  =  ( ( 𝑇 ‘ 𝑦 )  ·ih  𝑥 ) ) ) | 
						
							| 46 | 45 | ralbidva | ⊢ ( ( 𝑆 :  ℋ ⟶  ℋ  ∧  𝑇 :  ℋ ⟶  ℋ )  →  ( ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑆 ‘ 𝑥 )  ·ih  𝑦 )  ↔  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑦  ·ih  ( 𝑆 ‘ 𝑥 ) )  =  ( ( 𝑇 ‘ 𝑦 )  ·ih  𝑥 ) ) ) | 
						
							| 47 | 21 46 | bitr4id | ⊢ ( ( 𝑆 :  ℋ ⟶  ℋ  ∧  𝑇 :  ℋ ⟶  ℋ )  →  ( ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑆 ‘ 𝑦 ) )  =  ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑦 )  ↔  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑆 ‘ 𝑥 )  ·ih  𝑦 ) ) ) |