Metamath Proof Explorer


Theorem adjval

Description: Value of the adjoint function for T in the domain of adjh . (Contributed by NM, 19-Feb-2006) (Revised by Mario Carneiro, 24-Dec-2016) (New usage is discouraged.)

Ref Expression
Assertion adjval ( 𝑇 ∈ dom adj → ( adj𝑇 ) = ( 𝑢 ∈ ( ℋ ↑m ℋ ) ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑢𝑥 ) ·ih 𝑦 ) ) )

Proof

Step Hyp Ref Expression
1 dmadjop ( 𝑇 ∈ dom adj𝑇 : ℋ ⟶ ℋ )
2 1 biantrurd ( 𝑇 ∈ dom adj → ( ( 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑢𝑥 ) ·ih 𝑦 ) ) ↔ ( 𝑇 : ℋ ⟶ ℋ ∧ ( 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑢𝑥 ) ·ih 𝑦 ) ) ) ) )
3 ax-hilex ℋ ∈ V
4 3 3 elmap ( 𝑢 ∈ ( ℋ ↑m ℋ ) ↔ 𝑢 : ℋ ⟶ ℋ )
5 4 anbi1i ( ( 𝑢 ∈ ( ℋ ↑m ℋ ) ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑢𝑥 ) ·ih 𝑦 ) ) ↔ ( 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑢𝑥 ) ·ih 𝑦 ) ) )
6 3anass ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑢𝑥 ) ·ih 𝑦 ) ) ↔ ( 𝑇 : ℋ ⟶ ℋ ∧ ( 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑢𝑥 ) ·ih 𝑦 ) ) ) )
7 2 5 6 3bitr4g ( 𝑇 ∈ dom adj → ( ( 𝑢 ∈ ( ℋ ↑m ℋ ) ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑢𝑥 ) ·ih 𝑦 ) ) ↔ ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑢𝑥 ) ·ih 𝑦 ) ) ) )
8 7 iotabidv ( 𝑇 ∈ dom adj → ( ℩ 𝑢 ( 𝑢 ∈ ( ℋ ↑m ℋ ) ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑢𝑥 ) ·ih 𝑦 ) ) ) = ( ℩ 𝑢 ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑢𝑥 ) ·ih 𝑦 ) ) ) )
9 df-riota ( 𝑢 ∈ ( ℋ ↑m ℋ ) ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑢𝑥 ) ·ih 𝑦 ) ) = ( ℩ 𝑢 ( 𝑢 ∈ ( ℋ ↑m ℋ ) ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑢𝑥 ) ·ih 𝑦 ) ) )
10 9 a1i ( 𝑇 ∈ dom adj → ( 𝑢 ∈ ( ℋ ↑m ℋ ) ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑢𝑥 ) ·ih 𝑦 ) ) = ( ℩ 𝑢 ( 𝑢 ∈ ( ℋ ↑m ℋ ) ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑢𝑥 ) ·ih 𝑦 ) ) ) )
11 dfadj2 adj = { ⟨ 𝑡 , 𝑢 ⟩ ∣ ( 𝑡 : ℋ ⟶ ℋ ∧ 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑡𝑦 ) ) = ( ( 𝑢𝑥 ) ·ih 𝑦 ) ) }
12 feq1 ( 𝑡 = 𝑇 → ( 𝑡 : ℋ ⟶ ℋ ↔ 𝑇 : ℋ ⟶ ℋ ) )
13 fveq1 ( 𝑡 = 𝑇 → ( 𝑡𝑦 ) = ( 𝑇𝑦 ) )
14 13 oveq2d ( 𝑡 = 𝑇 → ( 𝑥 ·ih ( 𝑡𝑦 ) ) = ( 𝑥 ·ih ( 𝑇𝑦 ) ) )
15 14 eqeq1d ( 𝑡 = 𝑇 → ( ( 𝑥 ·ih ( 𝑡𝑦 ) ) = ( ( 𝑢𝑥 ) ·ih 𝑦 ) ↔ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑢𝑥 ) ·ih 𝑦 ) ) )
16 15 2ralbidv ( 𝑡 = 𝑇 → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑡𝑦 ) ) = ( ( 𝑢𝑥 ) ·ih 𝑦 ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑢𝑥 ) ·ih 𝑦 ) ) )
17 12 16 3anbi13d ( 𝑡 = 𝑇 → ( ( 𝑡 : ℋ ⟶ ℋ ∧ 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑡𝑦 ) ) = ( ( 𝑢𝑥 ) ·ih 𝑦 ) ) ↔ ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑢𝑥 ) ·ih 𝑦 ) ) ) )
18 11 17 fvopab5 ( 𝑇 ∈ dom adj → ( adj𝑇 ) = ( ℩ 𝑢 ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑢𝑥 ) ·ih 𝑦 ) ) ) )
19 8 10 18 3eqtr4rd ( 𝑇 ∈ dom adj → ( adj𝑇 ) = ( 𝑢 ∈ ( ℋ ↑m ℋ ) ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑢𝑥 ) ·ih 𝑦 ) ) )