| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dmadjop | ⊢ ( 𝑇  ∈  dom  adjℎ  →  𝑇 :  ℋ ⟶  ℋ ) | 
						
							| 2 | 1 | biantrurd | ⊢ ( 𝑇  ∈  dom  adjℎ  →  ( ( 𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) )  ↔  ( 𝑇 :  ℋ ⟶  ℋ  ∧  ( 𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) ) ) ) ) | 
						
							| 3 |  | ax-hilex | ⊢  ℋ  ∈  V | 
						
							| 4 | 3 3 | elmap | ⊢ ( 𝑢  ∈  (  ℋ  ↑m   ℋ )  ↔  𝑢 :  ℋ ⟶  ℋ ) | 
						
							| 5 | 4 | anbi1i | ⊢ ( ( 𝑢  ∈  (  ℋ  ↑m   ℋ )  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) )  ↔  ( 𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) ) ) | 
						
							| 6 |  | 3anass | ⊢ ( ( 𝑇 :  ℋ ⟶  ℋ  ∧  𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) )  ↔  ( 𝑇 :  ℋ ⟶  ℋ  ∧  ( 𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) ) ) ) | 
						
							| 7 | 2 5 6 | 3bitr4g | ⊢ ( 𝑇  ∈  dom  adjℎ  →  ( ( 𝑢  ∈  (  ℋ  ↑m   ℋ )  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) )  ↔  ( 𝑇 :  ℋ ⟶  ℋ  ∧  𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) ) ) ) | 
						
							| 8 | 7 | iotabidv | ⊢ ( 𝑇  ∈  dom  adjℎ  →  ( ℩ 𝑢 ( 𝑢  ∈  (  ℋ  ↑m   ℋ )  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) ) )  =  ( ℩ 𝑢 ( 𝑇 :  ℋ ⟶  ℋ  ∧  𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) ) ) ) | 
						
							| 9 |  | df-riota | ⊢ ( ℩ 𝑢  ∈  (  ℋ  ↑m   ℋ ) ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) )  =  ( ℩ 𝑢 ( 𝑢  ∈  (  ℋ  ↑m   ℋ )  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) ) ) | 
						
							| 10 | 9 | a1i | ⊢ ( 𝑇  ∈  dom  adjℎ  →  ( ℩ 𝑢  ∈  (  ℋ  ↑m   ℋ ) ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) )  =  ( ℩ 𝑢 ( 𝑢  ∈  (  ℋ  ↑m   ℋ )  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) ) ) ) | 
						
							| 11 |  | dfadj2 | ⊢ adjℎ  =  { 〈 𝑡 ,  𝑢 〉  ∣  ( 𝑡 :  ℋ ⟶  ℋ  ∧  𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑡 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) ) } | 
						
							| 12 |  | feq1 | ⊢ ( 𝑡  =  𝑇  →  ( 𝑡 :  ℋ ⟶  ℋ  ↔  𝑇 :  ℋ ⟶  ℋ ) ) | 
						
							| 13 |  | fveq1 | ⊢ ( 𝑡  =  𝑇  →  ( 𝑡 ‘ 𝑦 )  =  ( 𝑇 ‘ 𝑦 ) ) | 
						
							| 14 | 13 | oveq2d | ⊢ ( 𝑡  =  𝑇  →  ( 𝑥  ·ih  ( 𝑡 ‘ 𝑦 ) )  =  ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) ) ) | 
						
							| 15 | 14 | eqeq1d | ⊢ ( 𝑡  =  𝑇  →  ( ( 𝑥  ·ih  ( 𝑡 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 )  ↔  ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) ) ) | 
						
							| 16 | 15 | 2ralbidv | ⊢ ( 𝑡  =  𝑇  →  ( ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑡 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 )  ↔  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) ) ) | 
						
							| 17 | 12 16 | 3anbi13d | ⊢ ( 𝑡  =  𝑇  →  ( ( 𝑡 :  ℋ ⟶  ℋ  ∧  𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑡 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) )  ↔  ( 𝑇 :  ℋ ⟶  ℋ  ∧  𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) ) ) ) | 
						
							| 18 | 11 17 | fvopab5 | ⊢ ( 𝑇  ∈  dom  adjℎ  →  ( adjℎ ‘ 𝑇 )  =  ( ℩ 𝑢 ( 𝑇 :  ℋ ⟶  ℋ  ∧  𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) ) ) ) | 
						
							| 19 | 8 10 18 | 3eqtr4rd | ⊢ ( 𝑇  ∈  dom  adjℎ  →  ( adjℎ ‘ 𝑇 )  =  ( ℩ 𝑢  ∈  (  ℋ  ↑m   ℋ ) ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) ) ) |