Step |
Hyp |
Ref |
Expression |
1 |
|
adjval |
⊢ ( 𝑇 ∈ dom adjℎ → ( adjℎ ‘ 𝑇 ) = ( ℩ 𝑢 ∈ ( ℋ ↑m ℋ ) ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑢 ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
2 |
|
dmadjop |
⊢ ( 𝑇 ∈ dom adjℎ → 𝑇 : ℋ ⟶ ℋ ) |
3 |
|
elmapi |
⊢ ( 𝑢 ∈ ( ℋ ↑m ℋ ) → 𝑢 : ℋ ⟶ ℋ ) |
4 |
|
adjsym |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑢 : ℋ ⟶ ℋ ) → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑢 ‘ 𝑥 ) ·ih 𝑦 ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑢 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
5 |
|
eqcom |
⊢ ( ( 𝑥 ·ih ( 𝑢 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ↔ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑢 ‘ 𝑦 ) ) ) |
6 |
5
|
2ralbii |
⊢ ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑢 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑢 ‘ 𝑦 ) ) ) |
7 |
4 6
|
bitrdi |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑢 : ℋ ⟶ ℋ ) → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑢 ‘ 𝑥 ) ·ih 𝑦 ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑢 ‘ 𝑦 ) ) ) ) |
8 |
2 3 7
|
syl2an |
⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝑢 ∈ ( ℋ ↑m ℋ ) ) → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑢 ‘ 𝑥 ) ·ih 𝑦 ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑢 ‘ 𝑦 ) ) ) ) |
9 |
8
|
riotabidva |
⊢ ( 𝑇 ∈ dom adjℎ → ( ℩ 𝑢 ∈ ( ℋ ↑m ℋ ) ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑢 ‘ 𝑥 ) ·ih 𝑦 ) ) = ( ℩ 𝑢 ∈ ( ℋ ↑m ℋ ) ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑢 ‘ 𝑦 ) ) ) ) |
10 |
1 9
|
eqtrd |
⊢ ( 𝑇 ∈ dom adjℎ → ( adjℎ ‘ 𝑇 ) = ( ℩ 𝑢 ∈ ( ℋ ↑m ℋ ) ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑢 ‘ 𝑦 ) ) ) ) |