Metamath Proof Explorer


Theorem adjval2

Description: Value of the adjoint function. (Contributed by NM, 19-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion adjval2 ( 𝑇 ∈ dom adj → ( adj𝑇 ) = ( 𝑢 ∈ ( ℋ ↑m ℋ ) ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑢𝑦 ) ) ) )

Proof

Step Hyp Ref Expression
1 adjval ( 𝑇 ∈ dom adj → ( adj𝑇 ) = ( 𝑢 ∈ ( ℋ ↑m ℋ ) ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑢𝑥 ) ·ih 𝑦 ) ) )
2 dmadjop ( 𝑇 ∈ dom adj𝑇 : ℋ ⟶ ℋ )
3 elmapi ( 𝑢 ∈ ( ℋ ↑m ℋ ) → 𝑢 : ℋ ⟶ ℋ )
4 adjsym ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑢 : ℋ ⟶ ℋ ) → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑢𝑥 ) ·ih 𝑦 ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑢𝑦 ) ) = ( ( 𝑇𝑥 ) ·ih 𝑦 ) ) )
5 eqcom ( ( 𝑥 ·ih ( 𝑢𝑦 ) ) = ( ( 𝑇𝑥 ) ·ih 𝑦 ) ↔ ( ( 𝑇𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑢𝑦 ) ) )
6 5 2ralbii ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑢𝑦 ) ) = ( ( 𝑇𝑥 ) ·ih 𝑦 ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑢𝑦 ) ) )
7 4 6 bitrdi ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑢 : ℋ ⟶ ℋ ) → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑢𝑥 ) ·ih 𝑦 ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑢𝑦 ) ) ) )
8 2 3 7 syl2an ( ( 𝑇 ∈ dom adj𝑢 ∈ ( ℋ ↑m ℋ ) ) → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑢𝑥 ) ·ih 𝑦 ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑢𝑦 ) ) ) )
9 8 riotabidva ( 𝑇 ∈ dom adj → ( 𝑢 ∈ ( ℋ ↑m ℋ ) ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑢𝑥 ) ·ih 𝑦 ) ) = ( 𝑢 ∈ ( ℋ ↑m ℋ ) ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑢𝑦 ) ) ) )
10 1 9 eqtrd ( 𝑇 ∈ dom adj → ( adj𝑇 ) = ( 𝑢 ∈ ( ℋ ↑m ℋ ) ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑢𝑦 ) ) ) )