Step |
Hyp |
Ref |
Expression |
1 |
|
adjcl |
⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ ) → ( ( adjℎ ‘ 𝑇 ) ‘ 𝐴 ) ∈ ℋ ) |
2 |
|
eqcom |
⊢ ( ( ( 𝑇 ‘ 𝑥 ) ·ih 𝐴 ) = ( 𝑥 ·ih 𝑤 ) ↔ ( 𝑥 ·ih 𝑤 ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝐴 ) ) |
3 |
|
adj2 |
⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝑥 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑥 ) ·ih 𝐴 ) = ( 𝑥 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝐴 ) ) ) |
4 |
3
|
3com23 |
⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑥 ) ·ih 𝐴 ) = ( 𝑥 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝐴 ) ) ) |
5 |
4
|
3expa |
⊢ ( ( ( 𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑥 ) ·ih 𝐴 ) = ( 𝑥 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝐴 ) ) ) |
6 |
5
|
eqeq2d |
⊢ ( ( ( 𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( 𝑥 ·ih 𝑤 ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝐴 ) ↔ ( 𝑥 ·ih 𝑤 ) = ( 𝑥 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝐴 ) ) ) ) |
7 |
2 6
|
syl5bb |
⊢ ( ( ( 𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( ( 𝑇 ‘ 𝑥 ) ·ih 𝐴 ) = ( 𝑥 ·ih 𝑤 ) ↔ ( 𝑥 ·ih 𝑤 ) = ( 𝑥 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝐴 ) ) ) ) |
8 |
7
|
ralbidva |
⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ ) → ( ∀ 𝑥 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝐴 ) = ( 𝑥 ·ih 𝑤 ) ↔ ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih 𝑤 ) = ( 𝑥 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝐴 ) ) ) ) |
9 |
8
|
adantr |
⊢ ( ( ( 𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → ( ∀ 𝑥 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝐴 ) = ( 𝑥 ·ih 𝑤 ) ↔ ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih 𝑤 ) = ( 𝑥 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝐴 ) ) ) ) |
10 |
|
simpr |
⊢ ( ( ( 𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → 𝑤 ∈ ℋ ) |
11 |
1
|
adantr |
⊢ ( ( ( 𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → ( ( adjℎ ‘ 𝑇 ) ‘ 𝐴 ) ∈ ℋ ) |
12 |
|
hial2eq2 |
⊢ ( ( 𝑤 ∈ ℋ ∧ ( ( adjℎ ‘ 𝑇 ) ‘ 𝐴 ) ∈ ℋ ) → ( ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih 𝑤 ) = ( 𝑥 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝐴 ) ) ↔ 𝑤 = ( ( adjℎ ‘ 𝑇 ) ‘ 𝐴 ) ) ) |
13 |
10 11 12
|
syl2anc |
⊢ ( ( ( 𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → ( ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih 𝑤 ) = ( 𝑥 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝐴 ) ) ↔ 𝑤 = ( ( adjℎ ‘ 𝑇 ) ‘ 𝐴 ) ) ) |
14 |
9 13
|
bitrd |
⊢ ( ( ( 𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → ( ∀ 𝑥 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝐴 ) = ( 𝑥 ·ih 𝑤 ) ↔ 𝑤 = ( ( adjℎ ‘ 𝑇 ) ‘ 𝐴 ) ) ) |
15 |
1 14
|
riota5 |
⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ ) → ( ℩ 𝑤 ∈ ℋ ∀ 𝑥 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝐴 ) = ( 𝑥 ·ih 𝑤 ) ) = ( ( adjℎ ‘ 𝑇 ) ‘ 𝐴 ) ) |
16 |
15
|
eqcomd |
⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ ) → ( ( adjℎ ‘ 𝑇 ) ‘ 𝐴 ) = ( ℩ 𝑤 ∈ ℋ ∀ 𝑥 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝐴 ) = ( 𝑥 ·ih 𝑤 ) ) ) |