Metamath Proof Explorer


Theorem adjvalval

Description: Value of the value of the adjoint function. (Contributed by NM, 22-Feb-2006) (Proof shortened by Mario Carneiro, 10-Sep-2015) (New usage is discouraged.)

Ref Expression
Assertion adjvalval ( ( 𝑇 ∈ dom adj𝐴 ∈ ℋ ) → ( ( adj𝑇 ) ‘ 𝐴 ) = ( 𝑤 ∈ ℋ ∀ 𝑥 ∈ ℋ ( ( 𝑇𝑥 ) ·ih 𝐴 ) = ( 𝑥 ·ih 𝑤 ) ) )

Proof

Step Hyp Ref Expression
1 adjcl ( ( 𝑇 ∈ dom adj𝐴 ∈ ℋ ) → ( ( adj𝑇 ) ‘ 𝐴 ) ∈ ℋ )
2 eqcom ( ( ( 𝑇𝑥 ) ·ih 𝐴 ) = ( 𝑥 ·ih 𝑤 ) ↔ ( 𝑥 ·ih 𝑤 ) = ( ( 𝑇𝑥 ) ·ih 𝐴 ) )
3 adj2 ( ( 𝑇 ∈ dom adj𝑥 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( 𝑇𝑥 ) ·ih 𝐴 ) = ( 𝑥 ·ih ( ( adj𝑇 ) ‘ 𝐴 ) ) )
4 3 3com23 ( ( 𝑇 ∈ dom adj𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇𝑥 ) ·ih 𝐴 ) = ( 𝑥 ·ih ( ( adj𝑇 ) ‘ 𝐴 ) ) )
5 4 3expa ( ( ( 𝑇 ∈ dom adj𝐴 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇𝑥 ) ·ih 𝐴 ) = ( 𝑥 ·ih ( ( adj𝑇 ) ‘ 𝐴 ) ) )
6 5 eqeq2d ( ( ( 𝑇 ∈ dom adj𝐴 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( 𝑥 ·ih 𝑤 ) = ( ( 𝑇𝑥 ) ·ih 𝐴 ) ↔ ( 𝑥 ·ih 𝑤 ) = ( 𝑥 ·ih ( ( adj𝑇 ) ‘ 𝐴 ) ) ) )
7 2 6 syl5bb ( ( ( 𝑇 ∈ dom adj𝐴 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( ( 𝑇𝑥 ) ·ih 𝐴 ) = ( 𝑥 ·ih 𝑤 ) ↔ ( 𝑥 ·ih 𝑤 ) = ( 𝑥 ·ih ( ( adj𝑇 ) ‘ 𝐴 ) ) ) )
8 7 ralbidva ( ( 𝑇 ∈ dom adj𝐴 ∈ ℋ ) → ( ∀ 𝑥 ∈ ℋ ( ( 𝑇𝑥 ) ·ih 𝐴 ) = ( 𝑥 ·ih 𝑤 ) ↔ ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih 𝑤 ) = ( 𝑥 ·ih ( ( adj𝑇 ) ‘ 𝐴 ) ) ) )
9 8 adantr ( ( ( 𝑇 ∈ dom adj𝐴 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → ( ∀ 𝑥 ∈ ℋ ( ( 𝑇𝑥 ) ·ih 𝐴 ) = ( 𝑥 ·ih 𝑤 ) ↔ ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih 𝑤 ) = ( 𝑥 ·ih ( ( adj𝑇 ) ‘ 𝐴 ) ) ) )
10 simpr ( ( ( 𝑇 ∈ dom adj𝐴 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → 𝑤 ∈ ℋ )
11 1 adantr ( ( ( 𝑇 ∈ dom adj𝐴 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → ( ( adj𝑇 ) ‘ 𝐴 ) ∈ ℋ )
12 hial2eq2 ( ( 𝑤 ∈ ℋ ∧ ( ( adj𝑇 ) ‘ 𝐴 ) ∈ ℋ ) → ( ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih 𝑤 ) = ( 𝑥 ·ih ( ( adj𝑇 ) ‘ 𝐴 ) ) ↔ 𝑤 = ( ( adj𝑇 ) ‘ 𝐴 ) ) )
13 10 11 12 syl2anc ( ( ( 𝑇 ∈ dom adj𝐴 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → ( ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih 𝑤 ) = ( 𝑥 ·ih ( ( adj𝑇 ) ‘ 𝐴 ) ) ↔ 𝑤 = ( ( adj𝑇 ) ‘ 𝐴 ) ) )
14 9 13 bitrd ( ( ( 𝑇 ∈ dom adj𝐴 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → ( ∀ 𝑥 ∈ ℋ ( ( 𝑇𝑥 ) ·ih 𝐴 ) = ( 𝑥 ·ih 𝑤 ) ↔ 𝑤 = ( ( adj𝑇 ) ‘ 𝐴 ) ) )
15 1 14 riota5 ( ( 𝑇 ∈ dom adj𝐴 ∈ ℋ ) → ( 𝑤 ∈ ℋ ∀ 𝑥 ∈ ℋ ( ( 𝑇𝑥 ) ·ih 𝐴 ) = ( 𝑥 ·ih 𝑤 ) ) = ( ( adj𝑇 ) ‘ 𝐴 ) )
16 15 eqcomd ( ( 𝑇 ∈ dom adj𝐴 ∈ ℋ ) → ( ( adj𝑇 ) ‘ 𝐴 ) = ( 𝑤 ∈ ℋ ∀ 𝑥 ∈ ℋ ( ( 𝑇𝑥 ) ·ih 𝐴 ) = ( 𝑥 ·ih 𝑤 ) ) )