Step |
Hyp |
Ref |
Expression |
1 |
|
reelprrecn |
⊢ ℝ ∈ { ℝ , ℂ } |
2 |
1
|
a1i |
⊢ ( ⊤ → ℝ ∈ { ℝ , ℂ } ) |
3 |
|
rpre |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ ) |
4 |
3
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℝ ) |
5 |
4
|
recnd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℂ ) |
6 |
|
1cnd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → 1 ∈ ℂ ) |
7 |
|
recn |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℂ ) |
8 |
7
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ ) → 𝑥 ∈ ℂ ) |
9 |
|
1red |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ ) → 1 ∈ ℝ ) |
10 |
2
|
dvmptid |
⊢ ( ⊤ → ( ℝ D ( 𝑥 ∈ ℝ ↦ 𝑥 ) ) = ( 𝑥 ∈ ℝ ↦ 1 ) ) |
11 |
|
rpssre |
⊢ ℝ+ ⊆ ℝ |
12 |
11
|
a1i |
⊢ ( ⊤ → ℝ+ ⊆ ℝ ) |
13 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
14 |
13
|
tgioo2 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
15 |
|
ioorp |
⊢ ( 0 (,) +∞ ) = ℝ+ |
16 |
|
iooretop |
⊢ ( 0 (,) +∞ ) ∈ ( topGen ‘ ran (,) ) |
17 |
15 16
|
eqeltrri |
⊢ ℝ+ ∈ ( topGen ‘ ran (,) ) |
18 |
17
|
a1i |
⊢ ( ⊤ → ℝ+ ∈ ( topGen ‘ ran (,) ) ) |
19 |
2 8 9 10 12 14 13 18
|
dvmptres |
⊢ ( ⊤ → ( ℝ D ( 𝑥 ∈ ℝ+ ↦ 𝑥 ) ) = ( 𝑥 ∈ ℝ+ ↦ 1 ) ) |
20 |
|
relogcl |
⊢ ( 𝑥 ∈ ℝ+ → ( log ‘ 𝑥 ) ∈ ℝ ) |
21 |
20
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( log ‘ 𝑥 ) ∈ ℝ ) |
22 |
|
peano2rem |
⊢ ( ( log ‘ 𝑥 ) ∈ ℝ → ( ( log ‘ 𝑥 ) − 1 ) ∈ ℝ ) |
23 |
21 22
|
syl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( ( log ‘ 𝑥 ) − 1 ) ∈ ℝ ) |
24 |
23
|
recnd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( ( log ‘ 𝑥 ) − 1 ) ∈ ℂ ) |
25 |
|
rpreccl |
⊢ ( 𝑥 ∈ ℝ+ → ( 1 / 𝑥 ) ∈ ℝ+ ) |
26 |
25
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( 1 / 𝑥 ) ∈ ℝ+ ) |
27 |
26
|
rpcnd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( 1 / 𝑥 ) ∈ ℂ ) |
28 |
21
|
recnd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( log ‘ 𝑥 ) ∈ ℂ ) |
29 |
|
relogf1o |
⊢ ( log ↾ ℝ+ ) : ℝ+ –1-1-onto→ ℝ |
30 |
|
f1of |
⊢ ( ( log ↾ ℝ+ ) : ℝ+ –1-1-onto→ ℝ → ( log ↾ ℝ+ ) : ℝ+ ⟶ ℝ ) |
31 |
29 30
|
mp1i |
⊢ ( ⊤ → ( log ↾ ℝ+ ) : ℝ+ ⟶ ℝ ) |
32 |
31
|
feqmptd |
⊢ ( ⊤ → ( log ↾ ℝ+ ) = ( 𝑥 ∈ ℝ+ ↦ ( ( log ↾ ℝ+ ) ‘ 𝑥 ) ) ) |
33 |
|
fvres |
⊢ ( 𝑥 ∈ ℝ+ → ( ( log ↾ ℝ+ ) ‘ 𝑥 ) = ( log ‘ 𝑥 ) ) |
34 |
33
|
mpteq2ia |
⊢ ( 𝑥 ∈ ℝ+ ↦ ( ( log ↾ ℝ+ ) ‘ 𝑥 ) ) = ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) |
35 |
32 34
|
eqtrdi |
⊢ ( ⊤ → ( log ↾ ℝ+ ) = ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) ) |
36 |
35
|
oveq2d |
⊢ ( ⊤ → ( ℝ D ( log ↾ ℝ+ ) ) = ( ℝ D ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) ) ) |
37 |
|
dvrelog |
⊢ ( ℝ D ( log ↾ ℝ+ ) ) = ( 𝑥 ∈ ℝ+ ↦ ( 1 / 𝑥 ) ) |
38 |
36 37
|
eqtr3di |
⊢ ( ⊤ → ( ℝ D ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ℝ+ ↦ ( 1 / 𝑥 ) ) ) |
39 |
|
0cnd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → 0 ∈ ℂ ) |
40 |
|
1cnd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ ) → 1 ∈ ℂ ) |
41 |
|
0cnd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ ) → 0 ∈ ℂ ) |
42 |
|
1cnd |
⊢ ( ⊤ → 1 ∈ ℂ ) |
43 |
2 42
|
dvmptc |
⊢ ( ⊤ → ( ℝ D ( 𝑥 ∈ ℝ ↦ 1 ) ) = ( 𝑥 ∈ ℝ ↦ 0 ) ) |
44 |
2 40 41 43 12 14 13 18
|
dvmptres |
⊢ ( ⊤ → ( ℝ D ( 𝑥 ∈ ℝ+ ↦ 1 ) ) = ( 𝑥 ∈ ℝ+ ↦ 0 ) ) |
45 |
2 28 27 38 6 39 44
|
dvmptsub |
⊢ ( ⊤ → ( ℝ D ( 𝑥 ∈ ℝ+ ↦ ( ( log ‘ 𝑥 ) − 1 ) ) ) = ( 𝑥 ∈ ℝ+ ↦ ( ( 1 / 𝑥 ) − 0 ) ) ) |
46 |
27
|
subid1d |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( ( 1 / 𝑥 ) − 0 ) = ( 1 / 𝑥 ) ) |
47 |
46
|
mpteq2dva |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ ( ( 1 / 𝑥 ) − 0 ) ) = ( 𝑥 ∈ ℝ+ ↦ ( 1 / 𝑥 ) ) ) |
48 |
45 47
|
eqtrd |
⊢ ( ⊤ → ( ℝ D ( 𝑥 ∈ ℝ+ ↦ ( ( log ‘ 𝑥 ) − 1 ) ) ) = ( 𝑥 ∈ ℝ+ ↦ ( 1 / 𝑥 ) ) ) |
49 |
2 5 6 19 24 27 48
|
dvmptmul |
⊢ ( ⊤ → ( ℝ D ( 𝑥 ∈ ℝ+ ↦ ( 𝑥 · ( ( log ‘ 𝑥 ) − 1 ) ) ) ) = ( 𝑥 ∈ ℝ+ ↦ ( ( 1 · ( ( log ‘ 𝑥 ) − 1 ) ) + ( ( 1 / 𝑥 ) · 𝑥 ) ) ) ) |
50 |
24
|
mulid2d |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( 1 · ( ( log ‘ 𝑥 ) − 1 ) ) = ( ( log ‘ 𝑥 ) − 1 ) ) |
51 |
|
rpne0 |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ≠ 0 ) |
52 |
51
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ≠ 0 ) |
53 |
5 52
|
recid2d |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( ( 1 / 𝑥 ) · 𝑥 ) = 1 ) |
54 |
50 53
|
oveq12d |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( ( 1 · ( ( log ‘ 𝑥 ) − 1 ) ) + ( ( 1 / 𝑥 ) · 𝑥 ) ) = ( ( ( log ‘ 𝑥 ) − 1 ) + 1 ) ) |
55 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
56 |
|
npcan |
⊢ ( ( ( log ‘ 𝑥 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( log ‘ 𝑥 ) − 1 ) + 1 ) = ( log ‘ 𝑥 ) ) |
57 |
28 55 56
|
sylancl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( ( ( log ‘ 𝑥 ) − 1 ) + 1 ) = ( log ‘ 𝑥 ) ) |
58 |
54 57
|
eqtrd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( ( 1 · ( ( log ‘ 𝑥 ) − 1 ) ) + ( ( 1 / 𝑥 ) · 𝑥 ) ) = ( log ‘ 𝑥 ) ) |
59 |
58
|
mpteq2dva |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ ( ( 1 · ( ( log ‘ 𝑥 ) − 1 ) ) + ( ( 1 / 𝑥 ) · 𝑥 ) ) ) = ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) ) |
60 |
49 59
|
eqtrd |
⊢ ( ⊤ → ( ℝ D ( 𝑥 ∈ ℝ+ ↦ ( 𝑥 · ( ( log ‘ 𝑥 ) − 1 ) ) ) ) = ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) ) |
61 |
60
|
mptru |
⊢ ( ℝ D ( 𝑥 ∈ ℝ+ ↦ ( 𝑥 · ( ( log ‘ 𝑥 ) − 1 ) ) ) ) = ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) |