| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hbae-o |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑧 ∀ 𝑥 𝑥 = 𝑦 ) |
| 2 |
|
hbae-o |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑡 ∀ 𝑥 𝑥 = 𝑦 ) |
| 3 |
|
ax7 |
⊢ ( 𝑥 = 𝑡 → ( 𝑥 = 𝑦 → 𝑡 = 𝑦 ) ) |
| 4 |
3
|
spimvw |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → 𝑡 = 𝑦 ) |
| 5 |
2 4
|
alrimih |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑡 𝑡 = 𝑦 ) |
| 6 |
|
ax7 |
⊢ ( 𝑦 = 𝑢 → ( 𝑦 = 𝑡 → 𝑢 = 𝑡 ) ) |
| 7 |
|
equcomi |
⊢ ( 𝑢 = 𝑡 → 𝑡 = 𝑢 ) |
| 8 |
6 7
|
syl6 |
⊢ ( 𝑦 = 𝑢 → ( 𝑦 = 𝑡 → 𝑡 = 𝑢 ) ) |
| 9 |
8
|
spimvw |
⊢ ( ∀ 𝑦 𝑦 = 𝑡 → 𝑡 = 𝑢 ) |
| 10 |
9
|
aecoms-o |
⊢ ( ∀ 𝑡 𝑡 = 𝑦 → 𝑡 = 𝑢 ) |
| 11 |
10
|
axc4i-o |
⊢ ( ∀ 𝑡 𝑡 = 𝑦 → ∀ 𝑡 𝑡 = 𝑢 ) |
| 12 |
|
hbae-o |
⊢ ( ∀ 𝑡 𝑡 = 𝑢 → ∀ 𝑣 ∀ 𝑡 𝑡 = 𝑢 ) |
| 13 |
|
ax7 |
⊢ ( 𝑡 = 𝑣 → ( 𝑡 = 𝑢 → 𝑣 = 𝑢 ) ) |
| 14 |
13
|
spimvw |
⊢ ( ∀ 𝑡 𝑡 = 𝑢 → 𝑣 = 𝑢 ) |
| 15 |
12 14
|
alrimih |
⊢ ( ∀ 𝑡 𝑡 = 𝑢 → ∀ 𝑣 𝑣 = 𝑢 ) |
| 16 |
|
aecom-o |
⊢ ( ∀ 𝑣 𝑣 = 𝑢 → ∀ 𝑢 𝑢 = 𝑣 ) |
| 17 |
11 15 16
|
3syl |
⊢ ( ∀ 𝑡 𝑡 = 𝑦 → ∀ 𝑢 𝑢 = 𝑣 ) |
| 18 |
|
ax7 |
⊢ ( 𝑢 = 𝑤 → ( 𝑢 = 𝑣 → 𝑤 = 𝑣 ) ) |
| 19 |
18
|
spimvw |
⊢ ( ∀ 𝑢 𝑢 = 𝑣 → 𝑤 = 𝑣 ) |
| 20 |
5 17 19
|
3syl |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → 𝑤 = 𝑣 ) |
| 21 |
1 20
|
alrimih |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑧 𝑤 = 𝑣 ) |