Step |
Hyp |
Ref |
Expression |
1 |
|
hbae-o |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑧 ∀ 𝑥 𝑥 = 𝑦 ) |
2 |
|
hbae-o |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑡 ∀ 𝑥 𝑥 = 𝑦 ) |
3 |
|
ax7 |
⊢ ( 𝑥 = 𝑡 → ( 𝑥 = 𝑦 → 𝑡 = 𝑦 ) ) |
4 |
3
|
spimvw |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → 𝑡 = 𝑦 ) |
5 |
2 4
|
alrimih |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑡 𝑡 = 𝑦 ) |
6 |
|
ax7 |
⊢ ( 𝑦 = 𝑢 → ( 𝑦 = 𝑡 → 𝑢 = 𝑡 ) ) |
7 |
|
equcomi |
⊢ ( 𝑢 = 𝑡 → 𝑡 = 𝑢 ) |
8 |
6 7
|
syl6 |
⊢ ( 𝑦 = 𝑢 → ( 𝑦 = 𝑡 → 𝑡 = 𝑢 ) ) |
9 |
8
|
spimvw |
⊢ ( ∀ 𝑦 𝑦 = 𝑡 → 𝑡 = 𝑢 ) |
10 |
9
|
aecoms-o |
⊢ ( ∀ 𝑡 𝑡 = 𝑦 → 𝑡 = 𝑢 ) |
11 |
10
|
axc4i-o |
⊢ ( ∀ 𝑡 𝑡 = 𝑦 → ∀ 𝑡 𝑡 = 𝑢 ) |
12 |
|
hbae-o |
⊢ ( ∀ 𝑡 𝑡 = 𝑢 → ∀ 𝑣 ∀ 𝑡 𝑡 = 𝑢 ) |
13 |
|
ax7 |
⊢ ( 𝑡 = 𝑣 → ( 𝑡 = 𝑢 → 𝑣 = 𝑢 ) ) |
14 |
13
|
spimvw |
⊢ ( ∀ 𝑡 𝑡 = 𝑢 → 𝑣 = 𝑢 ) |
15 |
12 14
|
alrimih |
⊢ ( ∀ 𝑡 𝑡 = 𝑢 → ∀ 𝑣 𝑣 = 𝑢 ) |
16 |
|
aecom-o |
⊢ ( ∀ 𝑣 𝑣 = 𝑢 → ∀ 𝑢 𝑢 = 𝑣 ) |
17 |
11 15 16
|
3syl |
⊢ ( ∀ 𝑡 𝑡 = 𝑦 → ∀ 𝑢 𝑢 = 𝑣 ) |
18 |
|
ax7 |
⊢ ( 𝑢 = 𝑤 → ( 𝑢 = 𝑣 → 𝑤 = 𝑣 ) ) |
19 |
18
|
spimvw |
⊢ ( ∀ 𝑢 𝑢 = 𝑣 → 𝑤 = 𝑣 ) |
20 |
5 17 19
|
3syl |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → 𝑤 = 𝑣 ) |
21 |
1 20
|
alrimih |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑧 𝑤 = 𝑣 ) |