Metamath Proof Explorer


Theorem affineequiv4

Description: Equivalence between two ways of expressing A as an affine combination of B and C . (Contributed by AV, 22-Jan-2023)

Ref Expression
Hypotheses affineequiv.a ( 𝜑𝐴 ∈ ℂ )
affineequiv.b ( 𝜑𝐵 ∈ ℂ )
affineequiv.c ( 𝜑𝐶 ∈ ℂ )
affineequiv.d ( 𝜑𝐷 ∈ ℂ )
Assertion affineequiv4 ( 𝜑 → ( 𝐴 = ( ( ( 1 − 𝐷 ) · 𝐵 ) + ( 𝐷 · 𝐶 ) ) ↔ 𝐴 = ( ( 𝐷 · ( 𝐶𝐵 ) ) + 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 affineequiv.a ( 𝜑𝐴 ∈ ℂ )
2 affineequiv.b ( 𝜑𝐵 ∈ ℂ )
3 affineequiv.c ( 𝜑𝐶 ∈ ℂ )
4 affineequiv.d ( 𝜑𝐷 ∈ ℂ )
5 1 2 3 4 affineequiv3 ( 𝜑 → ( 𝐴 = ( ( ( 1 − 𝐷 ) · 𝐵 ) + ( 𝐷 · 𝐶 ) ) ↔ ( 𝐴𝐵 ) = ( 𝐷 · ( 𝐶𝐵 ) ) ) )
6 3 2 subcld ( 𝜑 → ( 𝐶𝐵 ) ∈ ℂ )
7 4 6 mulcld ( 𝜑 → ( 𝐷 · ( 𝐶𝐵 ) ) ∈ ℂ )
8 1 2 7 subadd2d ( 𝜑 → ( ( 𝐴𝐵 ) = ( 𝐷 · ( 𝐶𝐵 ) ) ↔ ( ( 𝐷 · ( 𝐶𝐵 ) ) + 𝐵 ) = 𝐴 ) )
9 eqcom ( ( ( 𝐷 · ( 𝐶𝐵 ) ) + 𝐵 ) = 𝐴𝐴 = ( ( 𝐷 · ( 𝐶𝐵 ) ) + 𝐵 ) )
10 8 9 bitrdi ( 𝜑 → ( ( 𝐴𝐵 ) = ( 𝐷 · ( 𝐶𝐵 ) ) ↔ 𝐴 = ( ( 𝐷 · ( 𝐶𝐵 ) ) + 𝐵 ) ) )
11 5 10 bitrd ( 𝜑 → ( 𝐴 = ( ( ( 1 − 𝐷 ) · 𝐵 ) + ( 𝐷 · 𝐶 ) ) ↔ 𝐴 = ( ( 𝐷 · ( 𝐶𝐵 ) ) + 𝐵 ) ) )