Step |
Hyp |
Ref |
Expression |
1 |
|
affineequiv.a |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
2 |
|
affineequiv.b |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
3 |
|
affineequiv.c |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
4 |
|
affineequiv.d |
⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
5 |
|
affineequivne.d |
⊢ ( 𝜑 → 𝐵 ≠ 𝐶 ) |
6 |
1 2 3 4
|
affineequiv3 |
⊢ ( 𝜑 → ( 𝐴 = ( ( ( 1 − 𝐷 ) · 𝐵 ) + ( 𝐷 · 𝐶 ) ) ↔ ( 𝐴 − 𝐵 ) = ( 𝐷 · ( 𝐶 − 𝐵 ) ) ) ) |
7 |
1 2
|
subcld |
⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) ∈ ℂ ) |
8 |
3 2
|
subcld |
⊢ ( 𝜑 → ( 𝐶 − 𝐵 ) ∈ ℂ ) |
9 |
5
|
necomd |
⊢ ( 𝜑 → 𝐶 ≠ 𝐵 ) |
10 |
3 2 9
|
subne0d |
⊢ ( 𝜑 → ( 𝐶 − 𝐵 ) ≠ 0 ) |
11 |
7 4 8 10
|
divmul3d |
⊢ ( 𝜑 → ( ( ( 𝐴 − 𝐵 ) / ( 𝐶 − 𝐵 ) ) = 𝐷 ↔ ( 𝐴 − 𝐵 ) = ( 𝐷 · ( 𝐶 − 𝐵 ) ) ) ) |
12 |
|
eqcom |
⊢ ( ( ( 𝐴 − 𝐵 ) / ( 𝐶 − 𝐵 ) ) = 𝐷 ↔ 𝐷 = ( ( 𝐴 − 𝐵 ) / ( 𝐶 − 𝐵 ) ) ) |
13 |
11 12
|
bitr3di |
⊢ ( 𝜑 → ( ( 𝐴 − 𝐵 ) = ( 𝐷 · ( 𝐶 − 𝐵 ) ) ↔ 𝐷 = ( ( 𝐴 − 𝐵 ) / ( 𝐶 − 𝐵 ) ) ) ) |
14 |
6 13
|
bitrd |
⊢ ( 𝜑 → ( 𝐴 = ( ( ( 1 − 𝐷 ) · 𝐵 ) + ( 𝐷 · 𝐶 ) ) ↔ 𝐷 = ( ( 𝐴 − 𝐵 ) / ( 𝐶 − 𝐵 ) ) ) ) |