Description: Equality deduction for function value, analogous to fveq12d . (Contributed by Alexander van der Vekens, 26-May-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | afveq12d.1 | ⊢ ( 𝜑 → 𝐹 = 𝐺 ) | |
| afveq12d.2 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | ||
| Assertion | afveq12d | ⊢ ( 𝜑 → ( 𝐹 ''' 𝐴 ) = ( 𝐺 ''' 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | afveq12d.1 | ⊢ ( 𝜑 → 𝐹 = 𝐺 ) | |
| 2 | afveq12d.2 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| 3 | 1 2 | dfateq12d | ⊢ ( 𝜑 → ( 𝐹 defAt 𝐴 ↔ 𝐺 defAt 𝐵 ) ) |
| 4 | 1 2 | fveq12d | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) = ( 𝐺 ‘ 𝐵 ) ) |
| 5 | 3 4 | ifbieq1d | ⊢ ( 𝜑 → if ( 𝐹 defAt 𝐴 , ( 𝐹 ‘ 𝐴 ) , V ) = if ( 𝐺 defAt 𝐵 , ( 𝐺 ‘ 𝐵 ) , V ) ) |
| 6 | dfafv2 | ⊢ ( 𝐹 ''' 𝐴 ) = if ( 𝐹 defAt 𝐴 , ( 𝐹 ‘ 𝐴 ) , V ) | |
| 7 | dfafv2 | ⊢ ( 𝐺 ''' 𝐵 ) = if ( 𝐺 defAt 𝐵 , ( 𝐺 ‘ 𝐵 ) , V ) | |
| 8 | 5 6 7 | 3eqtr4g | ⊢ ( 𝜑 → ( 𝐹 ''' 𝐴 ) = ( 𝐺 ''' 𝐵 ) ) |