| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elin |
⊢ ( 𝐴 ∈ ( 𝐵 ∩ dom 𝐹 ) ↔ ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ dom 𝐹 ) ) |
| 2 |
1
|
biimpri |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ dom 𝐹 ) → 𝐴 ∈ ( 𝐵 ∩ dom 𝐹 ) ) |
| 3 |
|
dmres |
⊢ dom ( 𝐹 ↾ 𝐵 ) = ( 𝐵 ∩ dom 𝐹 ) |
| 4 |
2 3
|
eleqtrrdi |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ dom 𝐹 ) → 𝐴 ∈ dom ( 𝐹 ↾ 𝐵 ) ) |
| 5 |
4
|
ex |
⊢ ( 𝐴 ∈ 𝐵 → ( 𝐴 ∈ dom 𝐹 → 𝐴 ∈ dom ( 𝐹 ↾ 𝐵 ) ) ) |
| 6 |
|
snssi |
⊢ ( 𝐴 ∈ 𝐵 → { 𝐴 } ⊆ 𝐵 ) |
| 7 |
6
|
resabs1d |
⊢ ( 𝐴 ∈ 𝐵 → ( ( 𝐹 ↾ 𝐵 ) ↾ { 𝐴 } ) = ( 𝐹 ↾ { 𝐴 } ) ) |
| 8 |
7
|
eqcomd |
⊢ ( 𝐴 ∈ 𝐵 → ( 𝐹 ↾ { 𝐴 } ) = ( ( 𝐹 ↾ 𝐵 ) ↾ { 𝐴 } ) ) |
| 9 |
8
|
funeqd |
⊢ ( 𝐴 ∈ 𝐵 → ( Fun ( 𝐹 ↾ { 𝐴 } ) ↔ Fun ( ( 𝐹 ↾ 𝐵 ) ↾ { 𝐴 } ) ) ) |
| 10 |
9
|
biimpd |
⊢ ( 𝐴 ∈ 𝐵 → ( Fun ( 𝐹 ↾ { 𝐴 } ) → Fun ( ( 𝐹 ↾ 𝐵 ) ↾ { 𝐴 } ) ) ) |
| 11 |
5 10
|
anim12d |
⊢ ( 𝐴 ∈ 𝐵 → ( ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) → ( 𝐴 ∈ dom ( 𝐹 ↾ 𝐵 ) ∧ Fun ( ( 𝐹 ↾ 𝐵 ) ↾ { 𝐴 } ) ) ) ) |
| 12 |
11
|
impcom |
⊢ ( ( ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) ∧ 𝐴 ∈ 𝐵 ) → ( 𝐴 ∈ dom ( 𝐹 ↾ 𝐵 ) ∧ Fun ( ( 𝐹 ↾ 𝐵 ) ↾ { 𝐴 } ) ) ) |
| 13 |
|
df-dfat |
⊢ ( ( 𝐹 ↾ 𝐵 ) defAt 𝐴 ↔ ( 𝐴 ∈ dom ( 𝐹 ↾ 𝐵 ) ∧ Fun ( ( 𝐹 ↾ 𝐵 ) ↾ { 𝐴 } ) ) ) |
| 14 |
|
afvfundmfveq |
⊢ ( ( 𝐹 ↾ 𝐵 ) defAt 𝐴 → ( ( 𝐹 ↾ 𝐵 ) ''' 𝐴 ) = ( ( 𝐹 ↾ 𝐵 ) ‘ 𝐴 ) ) |
| 15 |
13 14
|
sylbir |
⊢ ( ( 𝐴 ∈ dom ( 𝐹 ↾ 𝐵 ) ∧ Fun ( ( 𝐹 ↾ 𝐵 ) ↾ { 𝐴 } ) ) → ( ( 𝐹 ↾ 𝐵 ) ''' 𝐴 ) = ( ( 𝐹 ↾ 𝐵 ) ‘ 𝐴 ) ) |
| 16 |
12 15
|
syl |
⊢ ( ( ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) ∧ 𝐴 ∈ 𝐵 ) → ( ( 𝐹 ↾ 𝐵 ) ''' 𝐴 ) = ( ( 𝐹 ↾ 𝐵 ) ‘ 𝐴 ) ) |
| 17 |
|
fvres |
⊢ ( 𝐴 ∈ 𝐵 → ( ( 𝐹 ↾ 𝐵 ) ‘ 𝐴 ) = ( 𝐹 ‘ 𝐴 ) ) |
| 18 |
17
|
adantl |
⊢ ( ( ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) ∧ 𝐴 ∈ 𝐵 ) → ( ( 𝐹 ↾ 𝐵 ) ‘ 𝐴 ) = ( 𝐹 ‘ 𝐴 ) ) |
| 19 |
|
df-dfat |
⊢ ( 𝐹 defAt 𝐴 ↔ ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) ) |
| 20 |
|
afvfundmfveq |
⊢ ( 𝐹 defAt 𝐴 → ( 𝐹 ''' 𝐴 ) = ( 𝐹 ‘ 𝐴 ) ) |
| 21 |
19 20
|
sylbir |
⊢ ( ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) → ( 𝐹 ''' 𝐴 ) = ( 𝐹 ‘ 𝐴 ) ) |
| 22 |
21
|
eqcomd |
⊢ ( ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) → ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ''' 𝐴 ) ) |
| 23 |
22
|
adantr |
⊢ ( ( ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) ∧ 𝐴 ∈ 𝐵 ) → ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ''' 𝐴 ) ) |
| 24 |
16 18 23
|
3eqtrd |
⊢ ( ( ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) ∧ 𝐴 ∈ 𝐵 ) → ( ( 𝐹 ↾ 𝐵 ) ''' 𝐴 ) = ( 𝐹 ''' 𝐴 ) ) |
| 25 |
|
pm3.4 |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ dom 𝐹 ) → ( 𝐴 ∈ 𝐵 → 𝐴 ∈ dom 𝐹 ) ) |
| 26 |
1 25
|
sylbi |
⊢ ( 𝐴 ∈ ( 𝐵 ∩ dom 𝐹 ) → ( 𝐴 ∈ 𝐵 → 𝐴 ∈ dom 𝐹 ) ) |
| 27 |
26 3
|
eleq2s |
⊢ ( 𝐴 ∈ dom ( 𝐹 ↾ 𝐵 ) → ( 𝐴 ∈ 𝐵 → 𝐴 ∈ dom 𝐹 ) ) |
| 28 |
27
|
com12 |
⊢ ( 𝐴 ∈ 𝐵 → ( 𝐴 ∈ dom ( 𝐹 ↾ 𝐵 ) → 𝐴 ∈ dom 𝐹 ) ) |
| 29 |
7
|
funeqd |
⊢ ( 𝐴 ∈ 𝐵 → ( Fun ( ( 𝐹 ↾ 𝐵 ) ↾ { 𝐴 } ) ↔ Fun ( 𝐹 ↾ { 𝐴 } ) ) ) |
| 30 |
29
|
biimpd |
⊢ ( 𝐴 ∈ 𝐵 → ( Fun ( ( 𝐹 ↾ 𝐵 ) ↾ { 𝐴 } ) → Fun ( 𝐹 ↾ { 𝐴 } ) ) ) |
| 31 |
28 30
|
anim12d |
⊢ ( 𝐴 ∈ 𝐵 → ( ( 𝐴 ∈ dom ( 𝐹 ↾ 𝐵 ) ∧ Fun ( ( 𝐹 ↾ 𝐵 ) ↾ { 𝐴 } ) ) → ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) ) ) |
| 32 |
31
|
con3d |
⊢ ( 𝐴 ∈ 𝐵 → ( ¬ ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) → ¬ ( 𝐴 ∈ dom ( 𝐹 ↾ 𝐵 ) ∧ Fun ( ( 𝐹 ↾ 𝐵 ) ↾ { 𝐴 } ) ) ) ) |
| 33 |
32
|
impcom |
⊢ ( ( ¬ ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) ∧ 𝐴 ∈ 𝐵 ) → ¬ ( 𝐴 ∈ dom ( 𝐹 ↾ 𝐵 ) ∧ Fun ( ( 𝐹 ↾ 𝐵 ) ↾ { 𝐴 } ) ) ) |
| 34 |
|
afvnfundmuv |
⊢ ( ¬ ( 𝐹 ↾ 𝐵 ) defAt 𝐴 → ( ( 𝐹 ↾ 𝐵 ) ''' 𝐴 ) = V ) |
| 35 |
13 34
|
sylnbir |
⊢ ( ¬ ( 𝐴 ∈ dom ( 𝐹 ↾ 𝐵 ) ∧ Fun ( ( 𝐹 ↾ 𝐵 ) ↾ { 𝐴 } ) ) → ( ( 𝐹 ↾ 𝐵 ) ''' 𝐴 ) = V ) |
| 36 |
33 35
|
syl |
⊢ ( ( ¬ ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) ∧ 𝐴 ∈ 𝐵 ) → ( ( 𝐹 ↾ 𝐵 ) ''' 𝐴 ) = V ) |
| 37 |
|
afvnfundmuv |
⊢ ( ¬ 𝐹 defAt 𝐴 → ( 𝐹 ''' 𝐴 ) = V ) |
| 38 |
19 37
|
sylnbir |
⊢ ( ¬ ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) → ( 𝐹 ''' 𝐴 ) = V ) |
| 39 |
38
|
eqcomd |
⊢ ( ¬ ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) → V = ( 𝐹 ''' 𝐴 ) ) |
| 40 |
39
|
adantr |
⊢ ( ( ¬ ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) ∧ 𝐴 ∈ 𝐵 ) → V = ( 𝐹 ''' 𝐴 ) ) |
| 41 |
36 40
|
eqtrd |
⊢ ( ( ¬ ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) ∧ 𝐴 ∈ 𝐵 ) → ( ( 𝐹 ↾ 𝐵 ) ''' 𝐴 ) = ( 𝐹 ''' 𝐴 ) ) |
| 42 |
24 41
|
pm2.61ian |
⊢ ( 𝐴 ∈ 𝐵 → ( ( 𝐹 ↾ 𝐵 ) ''' 𝐴 ) = ( 𝐹 ''' 𝐴 ) ) |